
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,VOL. XX, NO. XX, 2014 1

Integral Reinforcement Learning for
Continuous-Time Input-Affine Nonlinear Systems

with Simultaneous Invariant Explorations
Jae Young Lee,Student Member, IEEE, Jin Bae Park∗, Member, IEEE, and Yoon Ho Choi

Abstract—This paper focuses on a class of reinforcement
learning (RL) algorithms, named integral RL (I-RL), that so lve
continuous-time (CT) nonlinear optimal control problems with
input-affine system dynamics. First, we extend the conceptsof
exploration, integral temporal difference, and invariant admissi-
bility to the target CT nonlinear system that is governed by a
control policy plus a probing signal called an exploration.Then,
we show input-to-state stability (ISS) and invariant admissibility
of the closed-loop systems with the policies generated by inte-
gral policy iteration (I-PI) or invariantly admissible PI ( IA-PI)
method. Based on these, three online I-RL algorithms named
explorized I-PI and integral Q-learning I, II are proposed, all of
which generate the same convergent sequences as I-PI and IA-
PI under the required excitation condition on the exploration.
All the proposed methods are partially or completely model-
free, and can simultaneously explore the state-space in a stable
manner during the online learning processes. ISS, invariant ad-
missibility, and convergence properties of the proposed methods
are also investigated, and related with these, we show the design
principles of the exploration for safe learning. Neural-network-
based implementation methods for the proposed schemes are also
presented in this paper. Finally, several numerical simulations are
carried out to verify the effectiveness of the proposed methods.

Index Terms—reinforcement learning, policy iteration, adap-
tive optimal control, Q-learning, continuous-time, exploration

I. I NTRODUCTION

REINFORCEMENT LEARNING (RL) is a class of learn-
ing algorithms that originates from and is inspired by

biological animal learning mechanisms, and is designed to
learn the best policy by interacting with a givenunknown
environment to maximize their long-term performance [1]–
[4]. From the very beginning of the research, RL methods
have been extensively studied in the fields of computational
intelligence, with special focus on the finite Markov decision
process (MDP) [3]. As a result, a variety of RL algorithms in
MDP environments have been proposed, including Sarsa,Q-
learning, and actor-critic methods, with successful applications
[2]–[6] (see [6] for survey). These RL methods were developed
based on the two core ideas:i) temporal difference (TD)and
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ii) exploration/exploitation, both of which now become the
fundamental components in RL [2]–[4].

TD error is one step prediction error, indicating how far
the estimated value function is from the true one for the
current policy [1]–[4]. Here, the value function, and its action-
dependent version calledQ-function, implicitly express the
long-term performance index for the current policy, and play
a central role in modifying the agent’s current policy in RL.
All RL methods equip at least one update rule, the objective
of which is to estimate the value function (orQ-function) by
decreasing the associated TD error [7]–[25].

Associated with the exploration/exploitation in RL, thereis
an exploitation vs. exploration dilemma[3], [4]: to achieve
an improved response, the RL agents shouldexploit the
information they obtain, but at the same timeexplore the
whole environments to improve future actions. In RL methods
for MDPs, a sufficient number of explorations of each state-
action pair is required for the learning of best response, and
thus exploitation and exploration should be properly balanced
during the learning period [3]–[5]. In this paper, we focus on
the exploitation/exploration issues and TD learning methods
in RL applied to continuous-time (CT) dynamical systems for
adaptive optimal control.

A. HJB Equations, TD Error, and PI in Optimal Control

In the fields of control system engineering, optimal control
theories have been developed as one of the fundamental
principles in the design of modern control systems [26],
[27]. The optimal control policy minimizes a given long-term
cost-to-go function, which specifies the desired performance
with respect to the system states and control inputs in the
long run, implicitly balancing the amount of required control
efforts and the desired transient response. Basically, such a
minimizing policy can be found using either Pontryagin’s
minimum principle or dynamic programming.Both optimal
control approaches, however, are intrinsically off-line and
require complete knowledge of the system dynamics.

In optimal control problems, the centerpiece of dynamic
programming is the Hamilton-Jacobi-Bellman (HJB) equation
[26]–[28] which is termed as the Bellman’s optimality equa-
tion in the field of computational intelligence (see [2]–[4]).
The optimal value function and control policy can be obtained
by solving the HJB equation. However, this is a formidable
task even in the case of completely known dynamics due to
the intractability of the HJB partial differential equation and
a problem known asthe curse of dimensionality.
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To alleviate these problems, researchers in the fields of
both control systems and machine learning have studied
the forward-in-time computational methods known as policy
iteration (PI) [7]–[17] and value iteration (VI) [17]–[20].
Both methods consist of two processes—policy evaluationand
policy improvement, and the difference between PI and VI lie
in policy evaluation (see [1], [3], [21] for a comprehensiveun-
derstanding). Unlike VI, PI minimizes the associated TD error
at each step of policy evaluation to compute the exact value
function which can be considered as a Lyapunov function in
many cases [1].

Combining the forward-in-time computational methods with
neural networks (NNs) in discrete-time (DT) domain, Werbos
[19] and years after, Prokhorov and Wunch [20] proposed
adaptive dynamic programming (ADP) methods for optimal
neuro-control. In these methods, one NN calledcritic plays a
role of policy evaluation for approximating the value function
(or Q-function), and the other NN calledactor learns the im-
proved policy as a role of policy improvement. Independently
of these works, the inverse optimal neuro-control methods
[29], [30] are developed, where the cost function isa posteriori
determined for the stabilizing feedback. In the inverse optimal
approach, one does not need to solve the HJB equation, but
cannot freely choose the required cost function unlike the
aforementioned ADP methods. The proposed RL methods
in this paper are a kind of online PI combined with NNs,
which efficiently find, by forward-in-time computation, the
CT optimal control solution satisfying the underlying HJB
equation, where the cost function is givena priori.

B. Exploitation and Exploration in Adaptive Optimal Control

Until recently, the exploitation and exploration issues in
control systems have been posed from the perspectives of
adaptive/neural control, with the direct connection to the
notion of persistent excitation (PE) [31], [32], [33, Section
7.6.2]. Without satisfaction of PE conditions, the learning
parameters cannot converge to the true values. On the other
hand, PE conditions make the system states and control
inputs oscillatory, not convergent to the equilibrium, and
even cause unbounded closed-loop responses in many cases,
especially when the states escape the stable region of the
nonlinear systems [32], [33, Section 8.2]. In this respect,
the exploitation vs. exploration dilemma can be reinterpreted
from a control theoretic perspective as a dilemma between the
satisfaction of PE (efficient exploration) and the satisfactory
control performance (exploitation to improve the stability and
state convergence).

Without considering the optimality of the target control
policy, considerable efforts have been made to design an
adaptive controller which efficiently balances the exploitation
and exploration for good transient performance by regulating
the magnitudes of the exploratory random signals injected
through the control input channels [31], [32], [33, Section
7.6.2]. Similar adaptive optimal control schemes for dynamical
systems have been also presented in the areas of RL and
ADP [13]–[18], [22]–[24], where the so-called probing noises
are injected through the control input channels to maintain

the PE conditions required to learn the targetoptimal policy
and the value function (orQ-function). Among these RL
and ADP methods, the iterativeQ-learning schemes based
on PI [13]–[16] and VI [18] have revealed that the probing
noises, called explorations in our previous works [13], [14],
play a central role in relaxing the requirements of the system
model dynamics. The key point here is that by virtue of
the explorations, these learning controllers can be applied to
systems withcompletely unknown dynamicsto find the optimal
policy in an online fashion with guaranteed convergence.

C. CT Nonlinear Adaptive Optimal Control

In CT domain, RL and ADP algorithms to solve the HJB
equation were developed without any proof of their stability
and convergence at first. After the pioneering works of [11],
[12], [21], a class of RL methods named integral RL (I-
RL) was presented with stability and convergence studies for
solving CT input-affine nonlinear optimal control problems
with unknown system drift dynamics (see [1] for a compre-
hensive survey). These I-RL methods are based on PI and VI
in the CT domain which minimize or decrease the associated
integral TD (I-TD) error at each step. For the I-RL schemes
developed from PI [7]–[9] in particular, which we call integral
PI (I-PI) in this paper, the stability and convergence to the
optimal solution are proven under the initial admissible policy
[12]. The implementation methods based on least squares (LS)
and the Galerkin NN approximation were also presented in
[12]. However,all the underlying I-RL methods require exact
knowledge of the input-coupling dynamics [1], [21], which
restricts the practical use of the algorithms.Second, unlike RL
schemes for DT dynamical systems [16], [18],there is no way
to simultaneously explore the state-space for the satisfaction
of PE conditions during online learning—resetting the state
variables to some non-zero points is the only way in these I-
RL methods [1], [12], [21] to give additional excitations tothe
state variables. Lastly,the given initial admissible region in I-
PI is not invariant for the intermediate closed-loop systems,
so that the state trajectory may escape the well-defined stable
region during the learning phase, especially at the time instant
the policy is updated[10].

For the same CT optimal control problems, these ideas
of I-RL are combined with adaptive control methodologies,
and the resulting online actor-critic RL methods, called syn-
chronous PI, were recently proposed in [22]–[25]. These
methods simultaneously update the actor and critic NNs in an
online fashion, and the stability of the RL control system is
proven under the assumption of PE. Though exhibiting novel
ideas,they require complete/partial knowledge of the system
dynamics [22]–[24] and/or an additional NN to identify the
system dynamics [24], [25].In our previous work [13], we
combined I-PI with both CTQ-function and exploration to
develop two online advanced I-RL algorithms: explorized PI
and integralQ-learning (see also [15] for a similar model-free
algorithm). Both algorithms can explore the whole state-space
and the latter can be applied to completely unknown dynamics.
However,these algorithms were focused only on solving CT
LQR problems and were not extended to general CT nonlinear
optimal control frameworks.
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D. Contributions

Based on I-PI in [12] and IA-PI in our recent work [10],
this paper proposes the three partially/completely model-free
I-RL algorithms, all of which are extensions of the work [13]
to CT nonlinear optimal control with input-affine dynamics,
and use NNs to approximate the value function and control
policy. Here, I-PI and IA-PI provide the basic ideas of I-
TD and invariant admissibility (the combined concept of
invariance and admissibility), respectively. All the proposed
methods can simultaneously and stably explore the state-space
during online learning, and can update the given admissible
region and the exploration signal to guarantee input-to-state
stability (ISS) and invariant admissibility. Moreover, tothe
best authors’ knowledge, the two methods out of the three,
named integralQ-learning I and II, respectively, are the first
ones that can learn the online optimal solutionin completely
unknown dynamics without any use of the additional identifier
NN, which was not achieved by any existing methods [12],
[22]–[25]. In the proposed methods, the cost function isa
priori that can be freely chosen without such restrictions as in
inverse optimal approaches [29], [30].

To develop the I-RL methods, this paper extends the con-
cepts of exploration, I-TD, and invariant admissibility tothe
CT nonlinear input-affine dynamical system that is governed
by a control policy and a probing signal called an exploration.
Then, we mathematically show i) ISS and invariant admissi-
bility regarding both explorations and policies generatedby
either IA-PI or I-PI, and ii) the excitation condition on the
exploration to uniquely solve the advanced I-TD equation.
This unique solution is equal to the solution to the I-TD
equation used in I-PI [12] and the associated Lyapunov equa-
tion used in PI [9] and IA-PI [10]. From these mathematical
results, we propose one partially model-free I-RL method
named explorized I-PI, and two model-free I-RL methods
named integralQ-learning I and II, respectively. ISS, invariant
admissibility, and convergence properties of the proposedI-RL
methods, related with the design of explorations, are also given
under the uniqueness condition. Finally, NN-based actor-critic
LS implementation methods are presented, and we simulate
the proposed I-RL methods to verify their performance and to
compare them with the others [12], [22], [24].

E. Notations and Mathematical Terminologies

In this paper, the following notations are adopted for a real
vectorx ∈ R

n and any real matricesX andY .

• ‖x‖: the Euclidean norm
√
xTx of x;

• σ̄(X): the maximum singular value ofX ;
• σ(X): the minimum singular value ofX ;
• X ⊗ Y : the Kronecker product ofX andY ;

• B0(r): an openr-radius ball{x : ‖x‖ < r};
• B̄0(r): a closedr-radius ball{x : ‖x‖ ≤ r}.

For anyN -vectorsxj ∈ R
nj (j = 1, 2, · · · , N ), the column

stacking operatorcol{x1, x2, · · · , xn} ∈ R
n1+n2+···+nN is

defined ascol{x1, x2, · · · , xN} := [ xT1 xT2 · · · xTN ]T . We
also denote the set of nonnegative integers and real numbers
by Z+ and R+, respectively. For any two setsΩ1 and Ω2

in R
n, “Ω1 ⊆ Ω2” and “Ω1 ⊂ Ω2” indicate thatΩ1 is a

subset and a proper subset ofΩ2, respectively;∂Ω1 denotes
the boundary ofΩ1. For a given domainD ⊆ R

n, the set
of all continuous and continuously differentiable functions are
denoted byC0(D) andC1(D), respectively.

Definition. A functionV : D → R+ is said to be positive
definite (onD) if it is continuous onD, V (0) = 0, and

V (x) > 0, ∀x ∈ D \ {0}.

Definition. A continuous functionα : [0, a) → [0,∞) is of
classK, denoted byα ∈ K, if it is strictly increasing and
α(0) = 0. A classK functionα is of classK∞, denoted by
α ∈ K∞, if a = ∞, and limr→∞ α(r) = ∞.

Definition. A continuous functionβ : [0, a)×[0,∞) → [0,∞)
is of classKL, denoted byβ ∈ KL, if β(·, s) ∈ K for
each fixeds, and for each fixedr, β(r, ·) is decreasing and
β(r, s) → 0 as s→ ∞.

We denote the gradient of a functionf : D ⊆ R
n → R by

∇f(x) :=
[

∂f(x)

∂x1
,
∂f(x)

∂x2
, · · · , ∂f(x)

∂xn

]T

∈ R
n,

wherexj (1 ≤ j ≤ n) is the j-th element ofx ∈ D. For a
vector-valued functionf(x) =

[

f1(x), f2(x), · · · , fm(x)
]T∈

R
m, ∇f(x) is meant to be a matrix of the first-order deriva-

tives of the form

∇f(x) :=
[

∇f1(x), ∇f2(x), · · · , ∇fm(x)
]

∈ R
n×m.

Throughout this paper,t indicates a specific time instant on
[0,∞) andτ ∈ [t,∞) will be used as the time variable after
the specified time instantt. In addition, any functions(τ) of
time τ will be denoted ass(τ), sτ , or simplys for conciseness.

II. N ONLINEAR OPTIMAL CONTROL PROBLEMS

Consider the following CT input-affine nonlinear system:

ẋτ = f(xτ ) + g(xτ )u(xτ ), x(t) = z ∈ D ⊆ R
n (1)

wherex ∈ R
n and u ∈ R

m are the state variable and the
control input;z is the state value at given initial time instant
τ = t; D ⊆ R

n is a set containing a neighborhood of the
origin; f : D → R

n with f(0) = 0 and g : D → R
n×m

are nonlinear functions that are locally Lipschitz onD. For
simplicity, we restrict our domain of interest to a neighborhood
of the origin, i.e., without loss of generality, we assume that

Assumption 1. D = B̄0(rd) for somerd > 0.

The results in this paper can be easily extended to a general
domainD without Assumption 1. For a well-posed problem,
we assumef(x) + g(x)u(x) is locally Lipschitz onD and
there is a policyu = µ(x) that stabilizes the system (1).

Definition 1. A policy µ(x) is meant to be a control input
function µ : D → R

m that is continuous on the domain of
interest and satisfiesµ(0) = 0.

For a stabilizing policyµ, define the region of attraction as

RA(µ) :=
{

z ∈ D : xτ (z;µ, 0) → 0 asτ → ∞
}

,
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wherexτ (z;µ, 0) denotes the state trajectoryx(τ) at timeτ ≥
t generated by the system (1) with the initial conditionxt =
z ∈ D and a policyu = µ(x). Here, the third parameter ‘0’ in
xτ (z;µ, 0) indicates the zero-exploration and will be clear in
Section IV. For simplicity, we writexτ ≡ xτ (z;µ, 0) if z and
µ are well-understood in the context. Using these notations,we
precisely define a feasible trajectory and a stabilizing policy
on a given region as follows:

Definition 2. For a given policyu = µ(x), we say that the
state trajectoryxτ ( · ;µ, 0) is feasible on a subsetΩ ⊆ D if

z ∈ Ω =⇒ xτ (z;µ, 0) ∈ D, ∀τ ≥ t. (2)

Definition 3. A policyu = µ(x) is said to stabilize the system
(1) on a subsetΩ ⊆ D if and only if

1) xτ (z;µ, 0) exists for allz ∈ Ω and all τ ≥ 0;
2) xτ ( · ;µ, 0) is feasible onΩ;
3) the equilibrium ‘0’ of the systeṁx = f + gµ is stable;
4) for all z ∈ Ω, limτ→∞ xτ (z;µ, 0) = 0.

The CT nonlinear optimal control problem considered in
this paper consists of the input-affine dynamics (1) and the
following performance index (3):

J(xt, u(·)) =
∫ ∞

t

r(xτ , uτ ) dτ, (3)

wherer(x, u) ∈ R is the cost function defined asr(x, u) :=
S(x)+uTRu > 0 for a positive definite functionS : D → R+

and a positive definite matrixR ∈ R
m×m. For this perfor-

mance index, the value functionV µ(z) for a policyu = µ(x)
and a given (initial) valuext = z ∈ D is defined, if exists, as

V µ(z) := J(z, u(·))|u=µ(x).

For the existence ofV µ, the policyµ needs to stabilize the
system (1). However, this is not sufficient for the existence,
so we introduce the concept of the admissible policy.

Definition 4. A policyu = µ(x) is admissible with respect to
(3) on a subsetΩ ⊆ D, denoted byµ ∈ A(Ω), if

1) u = µ(x) stabilizes the system(1) on Ω,
2) V µ(z) <∞, for all z ∈ Ω.

Note thatµ ∈ A(Ω) impliesΩ ⊆ RA(µ) and the existence
of V µ(z) ∀z ∈ Ω. In this case,V µ is positive definite on the
subsetΩ ⊆ D sincer(x, µ(x)) in (3) is positive definite onD.
Moreover, this property can be easily extended to the larger
domainD by assigning a fictitious value toV µ(z) for each
z ∈ D \ Ω such thatV µ is positive definite onD. Therefore,
Assumption 1 and [34, Lemma 4.3] imply the existence ofαµ,
ᾱµ ∈ K satisfying

αµ(‖x‖) ≤ V µ(x) ≤ ᾱµ(‖x‖) (4)

for all x ∈ D. Similarly, sinceS(x) is positive definite onD,
there existαs, ᾱs ∈ K such that

αs(‖x‖) ≤ S(x) ≤ ᾱs(‖x‖) (5)

holds for all x ∈ D. These classK functions in (4) and (5)
will be used in the analysis of the proposed I-RL algorithms.

For admissibility onΩ (or closed-loop stability), the trajec-
tory xτ ( · ;µ, 0) should be well-defined onΩ in the sense
of Definition 2, so thatxτ (z;µ, 0) starting from anyz ∈ Ω
remains in the well-defined domainD. This is guaranteed if
Ω ⊆ RA(µ) andD containsRA(µ) or an invariant estimate
of RA(µ) containingΩ. However,RA(µ) depends on the
policy µ, so we can hardly determine suchD independently
of µ. To overcome this difficulty and thereby, guarantee the
trajectory well-defined, we introduce the concept of invariant
admissibility (see our recent work [10] for detailed discussion
about this issue).

Definition 5. A policyu = µ(x) is invariantly admissible with
respect to(3) on a subsetΩ ⊆ D, denoted byµ ∈ AI(Ω), if
µ is admissible onΩ and

z ∈ Ω =⇒ xτ (z;µ, 0) ∈ Ω, ∀τ ≥ t. (6)

The invariance (6) in Definition 5 obviously implies the
feasibility condition (2). Moreover, ifΩ is compact, then the
existence ofxτ (z;µ, 0) ∀z ∈ Ω and ∀τ ≥ t is guaranteed
by (6) and [34, Theorem 3.3]. For this reason, we assume
throughout the paper that the invariant admissible setΩ in
Definition 5 is compact.

Define the HamiltonianH(x, u, p) as

H(x, u, p) := r(x, u) + pT (f(x) + g(x)u). (7)

Assumingµ ∈ A(Ω) andV µ is C1(Ω), then it satisfies the
following Lyapunov equation for the nonlinear system (1):

H(x, µ(x),∇V µ(x)) = 0, ∀x ∈ Ω, (8)

which is actually the infinitesimal version of (3) and implies

V̇ µ(xτ ) ≡ (∇V µ(xτ ))
T
(

f(xτ ) + g(xτ )µ(xτ )
)

= −r(xτ , µ(xτ )) < 0. (9)

That is,V µ(x) is a Lyapunov function for the system (1) [34].
Now, we define theV µ-induced compact setΩµ

d as

Ωµ
d := {x ∈ D : V µ(x) ≤ d}

for some constantd > 0, and state two technical lemmas
which will be used in the analysis of proposed I-RL methods.
The proof of Lemma 1 is in Appendix A.

Lemma 1. For µ ∈ A(Ω), if V µ ∈ C1(Ω), the value function
V µ is the unique solution to(8) over C1(Ω).

Lemma 2. SupposeV µ(x) is finite on a compact subset
Ω of D. Let d > 0 be a constant chosen in the interval
(0, minx∈∂Ω V

µ(x)). Then,Ωµ
d is in the interior ofΩ.

Proof: AssumeΩµ
d is not in the interior ofΩ. Then, there

is a pointy ∈ Ωµ
d on the boundary∂Ω. At this point, d <

minx∈∂Ω V
µ(x) ≤ V µ(y), but for all x ∈ Ωµ

d , V µ(x) ≤ d, a
contradiction ‘d < d’. So, Ωµ

d is in the interior ofΩ.

The objective of the I-RL algorithms presented in this
paper is to find the best admissible policyµ∗ minimizing
the performance index (3) and the corresponding optimal
value functionV ∗(x) := V µ∗

(x). Minimizing the Hamiltonian
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H(x, µ,∇V ∗) among all admissible policies, we can obtain
the optimal policyµ∗(x) as follows:

µ∗(x) = −1

2
R−1gT (x)∇V ∗(x). (10)

Furthermore, substituting (10) into (8) and rearranging the
equation yield the well-known HJB equation:

0 = S(x) +∇V ∗T f(x)− 1

4
∇V ∗T g(x)R−1gT (x)∇V ∗,

V ∗(0) = 0. (11)

The existence ofV ∗ ∈ C1 satisfying (11) is the necessary and
sufficient condition for optimality.

III. PI AND I-RL WITHOUT EXPLORATIONS

The objective of PI [7]–[10] and I-RL (I-PI [12]) methods
is to find the solutionV ∗ to the HJB equation (11) and the
corresponding optimal policy (10) by iterations. All the I-RL
methods proposed in this paper have the same purpose,i.e.,
finding the optimal solutionV ∗ and µ∗. In this preliminary
section, we present and briefly discuss the existing PI and I-
RL methods [9], [10], [12] without considering explorations.

Fig. 1 shows the whole process of a PI method, called IA-
PI in our recent work [10]. Normally, PI methods consist of
policy evaluation for solving the nonlinear Lyapunov equation
(8) and policy improvement for updating the policy by the rule

µi+1(x) = −1

2
R−1 gT (x) · ∇V µi(x) (12)

(see [1], [9]). In addition to this, the IA-PI in Fig. 1 updates
the next regionΩi+1 in the inv. admissible region update step
for the invariant admissibility ofµi andµi+1 on Ωi+1. This
step can be omitted if one can find a universal admissible set
Ω on whichµi ∈ A(Ω) ∀i ∈ Z+ and letΩi be equal toΩ
∀i ∈ Z+. In this case, IA-PI becomes the PI given in [8], [9].

For eachµi ∈ A(Ωi), let Ψi be a compact subset such that

1) Ωi ⊆ Ψi ⊂ RA(µi) ∩ D;
2) xτ (·, µi, 0) is feasible onΨi.

An example of suchΨi is Ωi in IA-PI (see Fig. 1), but we
consider the general case whereΨi satisfies the above two
conditions. By [10, Lemma 2], suchΨi for µi ∈ A(Ωi)
guaranteesµi ∈ A(Ψi), and therebyV µi(x) <∞ ∀x ∈ Ψi.

Assumption 2. For eachµi ∈ A(Ωi), V µi is C1 on Ψi, and
the next regionΩi+1 is given byΩi+1 = Ωµi

di
for somedi

chosen in the interval(0, minx∈∂Ψi
V µi(x)).

Theorem 1. Underµi ∈ A(Ωi) and Assumption 2,

1) Ωi+1 is in the interior ofΨi, andV µi ∈ C1(Ωi+1);
2) µi andµi+1 are invariantly admissible onΩi+1.

Proof: µi ∈ A(Ωi) and [10, Lemma 2] imply thatV µi

is finite onΨi, and we haveV µi ∈ C1(Ψi) by Assumption
2. So, Lemma 2 withΩ = Ψi impliesΩi+1 is in the interior
of Ψi, which again impliesV µi ∈ C1(Ωi+1) sinceΩi+1 is
compact. Moreover, by [10, Theorem 2] withΥi = Ωi+1, we
haveµi, µi+1 ∈ AI(Ωi+1).

Theorem 1 provides a concrete way to construct the next
invariantly admissible regionΩi+1 at eachi-th step, based on

[Initialize]

Set i = 0 and (µ0,Ω0) such that
µ0 ∈ A(Ω0) andΩ0 ⊆ D is compact.
Setε > 0 be a small constant.

Start

[Policy Evaluation]

Find V µi ∈ C1(Ωi) such that

H(x,µi(x),∇V
µi(x)) = 0, V µi(0) = 0.

[Policy Improvement]

Update the next policyµi+1 ∈ C
0(Ωi) by

µi+1(x) = −
1

2
R−1 gT (x) · ∇V µi(x)

[Inv. Admissible Region Update]

Find the next compact regionΩi+1 ⊆ D

such thatµi, µi+1 ∈ AI(Ωi+1).

supx∈Ωi+1
‖µi+1 − µi‖ < ε? Endno

i← i+ 1

yes

Fig. 1. Description of the IA-PI algorithm [10].

V µi and a given admissible regionΨi which is a subset of both
RA(µi) andD. However, estimatingRA(µi) or its subsetΨi

may cause high computational burden, and needs the complete
knowledge about the dynamics(f, g). On the other hand,Ψi

can be chosen asΨi = Ωi. In this case,Ωi+1 becomes rather
conservative, but can be determined without such obstaclesas
shown in the following corollary:

Corollary 1. Supposeµi ∈ A(Ωi) and Assumption 2 holds.
If Ψi is given byΨi = Ωi, then

1) Ωi+1 is in the interior ofΩi, andV µi ∈ C1(Ωi+1);
2) µi andµi+1 are invariantly admissible onΩi+1.

Note that sinceµi+1 ∈ AI(Ωi+1) impliesµi+1 ∈ A(Ωi+1),
Theorem 1 and Corollary 1 hold for alli ∈ Z+ by induction,
underµ0 ∈ A(Ω0). In the case “Ψi = Ωi for all ∀i ∈ Z+,”
it has been shown in [10] thatV µi uniformly converges to
V ∗ under certain conditions; this also implies the convergence
µi → µ∗. The convergence in the general case can be also
proven in a similar manner under Assumption 2.

Next, integrate (9) fromt to t + T to describe I-PI. Then,
we obtain the following I-TD equation for a givenµ ∈ A(Ω):

V µ(xt) =

∫ t+T

t

r(xτ , µ(xτ )) dτ + V µ(xt+T ). (13)

This I-TD equation is well-defined for allxt ∈ Ω and for any
T > 0 if µ is invariantly admissible onΩ sincext ∈ Ω andµ ∈
AI(Ω) guaranteesxτ (xt, µ, 0) remains in the admissible setΩ
for all τ ∈ [t, t+T ]. In the same way, IA-PI can be modified by
integratingV̇ µi(xτ ) = −r(xτ , µi(xτ )) over the time interval
[t, t+T ]. This modification results in I-PI shown in Algorithm
1, where only the policy evaluation step is described;the other
procedures are exactly same to IA-PI shown in Fig. 1. When
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Algorithm 1. Policy Evaluation of I-PI without Explorations
—————————————————————————
[Policy Evaluation]

Givenµi ∈ A(Ωi), find V µi ∈ C1(Ωi) by solving

V µi(xt) =

∫ t+T

t

r(xτ , µi(xτ )) dτ + V µi(xt+T ) (14)

on the domainΩi, wherexτ ≡ xτ (xt;µi, 0).

—————————————————————————

a universal admissible setΩ is given a priori and Ωi = Ω
∀i ∈ Z+, then Algorithm 1 becomes the I-PI given in [12].

If both IA-PI and I-PI use the same initial policyµ0 which
is admissible on the same regionΩ0, and generate the same
{Ωi+1}i∈Z+

, then they produce the same sequences
{

V µi
}

and
{

µi

}

. Therefore, I-PI inherits the properties of IA-PI
regarding convergence and invariant admissibility discussed
above (see also [10], [12]).

Remark 1. The I-TD (14) in Algorithm 1 does not contain
any explicit terms about(f, g), and the input coupling term
g(x) is only used in policy improvement(12). This makes the
algorithm partially model-free, i.e., the system drift dynamics
f(x) is not required to be known in I-PI.

IV. RL COMPONENTS

To develop the main I-RL methods, we extend the concept
of exploration in RL for a finite MDP to nonlinear dynamical
systems, and then with detailed mathematical analysis, present
advanced I-TD, the refined version of the I-TD (13) with
respect to exploration.

A. Exploration in Nonlinear Dynamical Systems

Now, we consider the nonlinear system explored by a known
time-varying probing signaleτ :

ẋτ = f(xτ ) + g(xτ )[u(xτ ) + eτ ], x(t) = z ∈ Ω, (15)

wheree : [t,∞) → R
m is called an exploration, and assumed

piecewise continuous and uniformly bounded;xτ (z;µ, e) de-
notes the state trajectoryx(τ) at timeτ ≥ t generated by the
nonlinear system (15) under the given policyu = µ(x) and
explorationeτ . Unlike in a finite MDP [3] or linear dynamical
systems [1], [13], [16], [18], we need the following concept
of invariant admissibility of an exploratione.

Definition 6. For a given policyµ ∈ AI(Ω), an exploration
e is said to be invariantly admissible onΩ, denoted bye ∈
AI(Ω;µ) or (µ, e) ∈ AI(Ω), with slight abuse of notation, if

z ∈ Ω =⇒ xτ (z;µ, e) ∈ Ω, ∀τ ≥ t. (16)

Notice that the invariance (16) in Definition 6 is an exten-
sion of (6) with respect to an exploratione; if Ω is compact and
(µ, e) ∈ AI(Ω), then the existence ofxτ (z;µ, e) ∀z ∈ Ω and
∀τ ≥ t is guaranteed by (16) and [34, Theorem 3.3], and (16)
also impliesxτ (·, µ, e) is feasible onΩ. Here, the feasibility
of xτ (·, µ, e) can be also defined in a similar manner to
Definition 6 by extending Definition 2. Moreover, ISS for the

explorized system (15), the stability counterpart of Definition
3, is precisely defined in this paper as follows.

Definition 7. For a given policyµ and an exploratione, we
say that the nonlinear system(15) is input-to-state stable on
Ω if xτ ≡ xτ (z;µ, e) exists∀z ∈ Ω and∀τ ≥ t, xτ is feasible
onΩ, and there existα(·) ∈ K andβ(·, ·) ∈ KL such that for
any z ∈ Ω and all τ ≥ t,

‖xτ‖ ≤ β
(

‖z‖, τ − t
)

+ α

(

sup
t≤s≤τ

‖e(s)‖
)

. (17)

Now, it is stated in the following theorem that ISS and
invariant admissibility ofe are preserved under the small
exploration if the policy is generated by either IA-PI or I-PI.

Theorem 2. Consider{µi} and{V µi} generated by IA-PI or
I-PI under Assumptions 1 and 2. If the exploratione satisfies

sup
t≤τ<∞

‖e(τ)‖ <

√

αs ◦ ᾱ−1
µi

(

di
)

σ̄(R)
, (18)

then (µi+1, e) ∈ AI(Ωi+1) and the nonlinear system(15)
underu = µi+1(x) is input-to-state stable onΩi+1. Moreover,
if D = Ωi = R

n andαµi
, αs ∈ K∞, then ISS holds globally

for any z ∈ R
n and any bounded explorationeτ .

Proof: See Appendix B.

B. Advanced I-TD and Design Principles of Exploration

If xτ is generated by (15) with non-zero exploration, then I-
TDs (13) and (14) in policy evaluation of I-PI do not function
properly. Meanwhile, if g(x) is not known a priori, the
next policyµi+1 cannot be updated by policy improvement,
either. To solve these two problems, the followinge-dependent
advanced I-TD is devised from I-TD (13):

V (xt) =

∫ t+T

t

[

r(x, µ(x)) + 2νT (x)Re(τ)

]

dτ + V (xt+T ),

(19)
where(µ, e) ∈ AI(Ω) is a given policy-exploration pair that is
invariantly admissible on a setΩ ⊆ D; x denotes the trajectory
xτ (z;µ, e) for z = xt ∈ Ω; V (x) ∈ R is positive definite and
C1 onΩ; ν(x) ∈ R

m is a policy to be determined. All the I-RL
methods proposed in this paper will be designed based on this
advanced I-TD (19). Compared to I-TD (13), the exploration
term νT (x)Re(τ) is added to cancel out the effects ofe on
I-TD, and to acquire the new policyν(x) = µ+(x) without
knowingg(x) a priori. Here,µ+(x) is the desired next policy
defined in terms ofg(x) and∇V (x) as

µ+(x) := −1

2
R−1gT (x)∇V (x).

For the discussions, we assume without loss of generality that
e is T -periodic,i.e., eτ = eτ+T for all τ ≥ t.

Theorem 3. Finding V ∈ C1(Ω) and a policyν satisfying
(19) for all z = xt ∈ Ω is equivalent to solving

H(x, µ(x),∇V (x)) = 2ϕT (x)Reτ (20)

for all x ∈ Ω andτ ∈ [t, t+T ), whereϕ(x) := µ+(x)−ν(x)
is the policy error.
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Proof: See Appendix C.
Using Theorem 3, one can easily verify that ifV µ ∈ C1(Ω),

V (x) = V µ(x), ν(x) = µ+(x)|V =V µ (21)

are a solution to the advanced I-TD equation (19) and satisfy

H(x, µ(x),∇V (x)) = 0, ϕ(x) = 0, ∀x ∈ Ω.

However, the solution may not be unique. For example, if
m = 1 and eτ is constant,i.e., eτ ≡ c ∀τ ∈ [t, t + T ), then
Theorem 3 impliesν can be obtained fromV (x) andc as

ν(x) = µ+(x) +H(x, µ(x),∇V (x))/Rc.

This means that for a givenV (x), there are infinitely many
solutions depending on the constantc unless

H(x, µ(x),∇V (x)) ≡ 0.

For the case wheng(x) is known,ν = µ+ can be substituted
to (19) to obtain the following simplified advanced I-TD:

V (xt)−V (xt+T ) =

∫ t+T

t

[

r(x, µ(x))−∇TV (x)·g(x)eτ
]

dτ.

(22)
In this case, the solutionV = V µ to (22) is unique as stated
below.

Corollary 2. Assume thatV µ is C1 on Ω. If V ∈ C1(Ω) is
the solution to the advanced I-TD(22), thenV = V µ.

Proof: I-TD (22) is the advanced I-TD (19) withϕ(x) =
0. So, Theorem 3 implies thatV ∈ C1(Ω) satisfying (22) for
all x ∈ Ω is the solution of the Hamiltonian equation

H(x, µ(x),∇V (x)) = 0, ∀x ∈ Ω.

Then, the application of Lemma 1 concludesV = V µ.

If g(x) is not knowna priori, then we cannot substitute
ν = µ+ to the advanced I-TD (19). In this general case, the
uniqueness of (21) depends on the excitation condition. To see
this, let tj ∈ [t, t + T ] (j = 0, 1, · · · , L) be the time instants
satisfying

t0 = t ≤ t1 ≤ t2 ≤ · · · ≤ tL = t+ T,

and assume thateτ is piecewise constant and determined by

eτ = cj , ∀τ ∈ [tj , tj+1), (23)

where{cj}Lj=1 is a sequence of constant vectors inRm. We
also define them× (l− k) matrixCk: l for 1 ≤ k ≤ l ≤ L as

Ck: l :=
[

ck ck+1 · · · cl
]

.

Then, under the substitution of (23), (20) can be written as

H(x, µ(x),∇V (x)) = 2ϕT (x)Rcj , (24)

for all x ∈ Ω and all j ∈ {1, 2, · · · , L}.

Assumption 3a. There existκ1, κ2 > 0 such that

κ1I ≤
L−1
∑

j=1

(cj − cj+1)(cj − cj+1)
T ≤ κ2I.

Theorem 4. Supposeeτ is given by(23) and V µ ∈ C1(Ω).
Then, the solution to the advanced I-TD(19) is uniquely
determined by(21) under Assumption 3a.

Proof: By Theorem 3 and the above discussion, solving
(19) for all x ∈ Ω is equivalent to findingV andν satisfying
(24) for all x ∈ Ω and all j ∈ {1, 2, · · · , L}. From (24), we
have2(cj − cj+1)

TRϕ(x) = 0 (j = 1, 2, · · · , L− 1). That is,

2(C1:L−1 − C2:L)Rϕ(x) = 0. (25)

From (25) and Assumption 3a,ϕ(x) ≡ 0 is obtained since
Assumption 3a is equivalent to

κ1I ≤ (C1:L−1 − C2:L)(C1:L−1 − C2:L)
T ≤ κ2I,

which implies rank (C1:L−1 − C2:L) = m. Moreover, the
substitution ofϕ = 0 into (24) yieldsH(x, µ(x),∇V (x)) ≡ 0.
Therefore, the application of Lemma 1 provesV = V µ, and
we obtainν = µ+|V =V µ from ϕ = 0.

Under the substitutionV = V µ, (19) can be rewritten as

V µ(xt) =

∫ t+T

t

[

r(x, µ(x)) + 2νT (x)Reτ

]

dτ + V µ(xt+T ),

(26)
and (24) is more relaxed to

ϕT (x)Rcj = 0, ∀x ∈ Ω, ∀j ∈ {1, 2, · · · , L}, (27)

due toH(x, µ(x), V µ(x)) = 0. In this case, the uniqueness
of (21) is guaranteed under the following simple excitation
condition:

Assumption 3b. There existκ3, κ3 > 0 such that

κ3I ≤
L
∑

j=1

cjc
T
j ≤ κ4I.

Theorem 5. SupposeV = V µ ∈ C1(Ω) and eτ is given by
(23). Then, the solution to the advanced I-TD(19) is uniquely
determined by(21) under Assumption 3b.

Proof: Note that (27) impliesC1:LRϕ(x) = 0 ∀x ∈ Ω,
which yieldsϕ(x) ≡ 0 sincerank (C1:L) = m by Assumption
3b. Therefore, byV = V µ andϕ = 0, we haveν = µ+|V=V µ .

Remark 2. Assumption 3b is equivalent to the following
excitation condition for some constantsπ3, π4 > 0:

π3I ≤
∫ t+T

t

eτe
T
τ dτ ≤ π4I. (28)

Similarly, if tj+1 − tj = T/L for all j ∈ {0, 1, 2, · · · , L− 1},
then Assumption 3a is equivalent to the existence ofπ1, π2 > 0
such that

π1I ≤
∫ t+L−1

L
T

t

(eτ − eτ+T
L
)(eτ − eτ+T

L
)T dτ ≤ π2I. (29)

Note that for Assumption 3a, there should exists a sub-
sequence{cjk}m+1

k=1 whose difference{cjk − cjk+1
}mk=1 is

linearly independent. For this,L ≥ m+1 is required. On the
other hand, the existence of linearly independent subsequence
{cjk}mk=1 suffices for eτ to satisfy Assumption 3b. In this
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[Initialize]
Setε > 0 be a small constant andi = 0.
Set (ν0, e,Ω0) be such thatΩ0 ⊆ D is
compact and(ν0, e) ∈ AI(Ω0).

Start

[Policy Evaluation]

Find Vi+1 ∈ C
1(Ωi) such that for allx ∈ Ωi,

H(x, νi(x),∇Vi+1(x)) ≈ 0, Vi+1(0) = 0.

[Policy Improvement]

Find the next policyνi+1 ∈ C
0(Ωi) satisfying

νi+1 ≈ −
1

2
R−1 gT · ∇Vi+1, ∀x ∈ Ωi.

[Inv. Admissible Region and Exploration Update]

Find the next compact regionΩi+1 ⊆ D and
an explorationeτ such that

νi ∈ AI(Ωi+1) and (νi+1, e) ∈ AI(Ωi+1).

supx∈Ωi+1
‖µi+1 − µi‖ < ε? Endno

i← i+ 1

yes

Fig. 2. General description of the proposed online I-RL methods.

case, we needL ≥ m. Therefore, whenV is given by
V µ a priori, the construction of the explorationeτ becomes
relatively simple and easy. For instance, ifm = 1, then two
constantsc1 6= c2 (e.g., c1 = 1 and c2 = 0) are necessary to
constructeτ without violating Assumption 3a. On the contrary,
for the case ofV = V µ andm = 1, eτ satisfying Assumption
3b can be designed using only one constantc1 6= 0. Remember
that ‘Assumption 3a’ or ‘Assumption 3b withV = V µ’ is
required to guarantee the uniqueness of the solution (21), as
stated in Theorems 4 and 5.

V. M AIN I-RL A LGORITHMS WITH EXPLORATIONS

Motivated by the advanced I-TDs (19), (22), and (26), we
propose three partially/completely model-free I-RL algorithms
that exploit the explorationeτ to simultaneously excite the
states and learn the next policy without knowing the nonlinear
dynamics(f, g). While IA-PI is an off-line method, all the
proposed I-RL algorithms can run in online fashion even when
the nonlinear system(f, g) is partially/completely unknown
and undergoes explorationeτ . Fig. 2 describes the whole
process of the proposed methods in a unified manner, which
are similar to but different from IA-PI and I-PI described in
Fig. 1 and Algorithm 1, as described below.

1) At eachi-th policy evaluation and improvement steps of
the proposed methods, the I-RL agent utilizes advanced
I-TDs to find Vi+1 andνi+1 satisfyingVi+1 ≈ V νi and
νi+1 ≈ ν+i+1 on Ωi, whereν+i+1 is given by

ν+i+1 = −1

2
R−1gT (x)∇V νi(x).

Algorithm 2. Explorized I-PI
—————————————————————————
Policy Evaluation: Given (νi, e) ∈ AI(Ωi) andz ∈ Ωi, find
Vi+1 ∈ C1(Ωi) such that

Vi+1(xt)− Vi+1(xt+T )

=

∫ t+T

t

[

r(x, νi(x))−∇TVi+1(x) · g(x)eτ
]

dτ (30)

wherex ≡ xτ (z; νi, e).

Policy Improvement: Update the next policyνi+1 by

νi+1(x) = −1

2
R−1 gT (x) · ∇Vi(x).

—————————————————————————

Note that all the proposed methods are equal to I-PI and
IA-PI in the iteration domain, as long as the generated
value functions and policies have no errors. That is, if
Vi+1 = V νi and νi+1 = ν+i+1, ∀i ∈ Z+ and ν0 = µ0,
then, we haveVi+1 = V µi and νi+1 = µi+1, ∀i ∈ Z+,
whereV µi andµi+1 are generated by IA-PI or I-PI.

2) While IA-PI and I-PI cannot explore the state-space
in online fashion, the proposed methods use invariantly
admissible explorations to simultaneously excite the state
variables. So, to maintain invariant admissibility of the
exploration, the proposed methods (re-)generateeτ both
at the initialization step and after each policy improve-
ment, as shown in Fig. 2.

Note that the three I-RL methods are designed based on the
respective advanced I-TDs (19), (22), and (26), which makes
differences in policy evaluation and improvement steps. The
other parts are exactly same to those presented in Fig. 2, so
are omitted in the descriptions of the proposed I-RL methods
(Algorithms 2–4).

A. Explorized I-PI

The first one is named as explorized I-PI whose policy
evaluation and improvement are described in Algorithm 2. As
can be seen from Algorithm 2, explorized I-PI comes from
the advanced I-TD (22) and is able to simultaneously excite
the states during policy evaluation by using the exploration
eτ . Unlike Algorithm 1, the advanced I-TD (30) contains
the explorized term ‘∇TVi+1(x) · g(x)eτ ’ to cancel out the
effects of the exploratione. When e ≡ 0, explorized I-PI
(Algorithm 2) becomes the I-PI described in Algorithm 1 and
in Section III, provided that (30) holds for allz = xt ∈ Ωi.
In explorized I-PI,eτ does not need to satisfy the excitation
conditions such as those in Assumptions 3a and 3b as neither
does the advanced I-TD (22). By Corollary 2, explorized I-
PI guarantees uniqueness of the solutionVi = V νi for any
given explorationeτ , and one just need to efficiently explore
the state-space usingeτ without considering any excitation
conditionson eτ .

B. IntegralQ-Learning I, II: Model-free I-RLs

The other two I-RL algorithms proposed in this paper are
named integralQ-learning I and II, which are derived from
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Algorithm 3. Integral Q-learning I
—————————————————————————
Policy Evaluation & Improvement: Given (νi, e) ∈ AI(Ωi)
andz ∈ Ωi, find Vi+1 ∈ C1(Ωi) andνi+1 ∈ C0(Ωi) such that

Vi+1(xt)− Vi+1(xt+T )

=

∫ t+T

t

[

r(x, νi(x)) + 2νTi+1(x)Reτ

]

dτ (31)

wherex ≡ xτ (z; νi, e).
—————————————————————————

Algorithm 4. Integral Q-learning II
—————————————————————————
Policy Evaluation: Given νi ∈ AI(Ωi) and z ∈ Ωi, find
Vi+1 ∈ C1(Ωi) such that

Vi+1(xt) =

∫ t+T

t

r(xτ , νi(xτ )) dτ + Vi+1(xt+T )

wherexτ ≡ xτ (z; νi, 0).

Policy Improvement: Given (νi, e) ∈ AI(Ωi), z ∈ Ωi, and
Vi+1 ∈ C1(Ωi), find the next policyνi+1 ∈ C0(Ωi) such that
(31) holds, wherex ≡ xτ (z; νi, e).
—————————————————————————

the advanced I-TDs (19) and (26), respectively, and can be
implemented without knowing the system dynamics(f, g).
In both algorithms, the explorationeτ plays a central role in
relaxing the requirement of the knowledge ofg(x).

Algorithm 3 describes policy evaluation and improvement
of the proposed integralQ-learning I; as mentioned before, the
other steps of the algorithms are exactly same to those in Fig.
2. In this method, the I-RL agent finds the solutionVi+1 ∈
C1(Ωi) andνi+1 ∈ C0(Ωi) of the advanced I-TD (31) at the
same time. On the contrary, integralQ-learning II illustrated
in Algorithm 4 performs policy evaluation and improvement
separately. In this second method, policy evaluation uses the
zero exploratione ≡ 0, and is the same as that of Algorithm 2
undere ≡ 0; policy improvement of Algorithm 4 is developed
from the advanced I-TD (26) to simultaneously explore the
state space, and at the same time, to find the next policyνi+1

satisfying (31) without using the knowledge of(f, g).

For simplicity, we assume in this paper that the exploration
e applied to Algorithms 3 and 4 is given by (23) for some
constant vectors{cj}Lj=1. In this case, for the uniqueness of
the solutionVi+1 = V νi andνi+1 = ν+i+1, the vectors{cj}Lj=1

should be carefully chosen so that they satisfy Assumption
3a for the first method and Assumption 3b for the second
method. In general cases, (28) and (29) can be alternatives
to Assumptions 3b and 3a, respectively. Although integral
Q-learning II cannot simultaneously explore the state space
in policy evaluation, the exploration in policy improvement
can be designed in a simpler manner than the exploration
in integral Q-learning I. This is because the construction of
{cj}Lj=1 satisfying Assumption 3b is relatively easier and
simpler than that of{cj}Lj=1 satisfying Assumption 3a, as
mentioned in Section IV.

Fig. 3. Switching and exploration scheme whenΩi+1 ⊆ Ωi in R
2.

C. Exploration, ISS, and Invariant Admissibility

Regarding the explorations applied to the proposed methods,
we have focused on the excitation conditions to uniquely
obtain Vi+1 ≈ V νi and νi+1 ≈ ν+i+1 at each iteration. The
required excitation condition for each proposed method canbe
summarized as follows: 1)Explorized PI: None, 2)Integral
Q-learning I: Assumption 3a, and 3)Integral Q-learning
II: Assumption 3b. In this subsection, we suppose that ati-th
iteration,Vi+1 and νi+1 has no error,i.e., Vi+1 = V νi and
νi+1 = ν+i+1 on Ωi, and consider the next policyνi+1 and
next invariantly admissible regionΩi+1. Let αi+1 and ᾱi+1

be of classK satisfying

αi+1(‖x‖) ≤ Vi+1(x) ≤ ᾱi+1(‖x‖).

In this ideal case, the proposed I-RL methods are equal to IA-
PI and I-PI in the iteration domain, so under Assumption 2
with µi replaced byνi, the policiesνi andνi+1 are invariantly
admissible onΩi+1 by Theorem 1 andΩi+1 = Ωνi

di
. Moreover,

Theorem 2 implies that(νi+1, e) is invariantly admissible on
Ωi+1, and that the systeṁx = f+g(νi+1+e) is input-to-state
stable onΩi+1 if the exploratione is bounded by

sup
t≤τ<∞

‖e(τ)‖ <
√

αs ◦ ᾱ−1
i+1

(

di
)

/σ̄(R). (32)

If D = R
n andαi+1, αs ∈ K∞, then this ISS holds globally

for any bounded explorationeτ by Theorem 2. In case of
that e is constructed from some constant vectors{cj}Nj=1 and
satisfies (23), the boundedness condition (32) is replaced by

‖cj‖ <
√

αs ◦ ᾱ−1
i+1

(

di
)

/σ̄(R), ∀j ∈ {1, 2, · · · , N}. (33)

Now, the remaining question is what to do when the statex
is outside the invariantly admissible regionΩi+1 during online
learning at(i+ 1)-th step. Note that using Corollary 1,Ωi+1

can be determined asΩi+1 = Ωνi
di

underVi+1 = V νi andνi ∈
A(Ωi) by choosingdi in the interval(0,minx∈∂Ωi

Vi+1(x)).
In this case, we haveΩi+1 ⊆ Ωi; by Theorem 2,(νi+1, e) ∈
AI(Ωi+1) for e satisfying (32). However, it is not guaranteed
that (νi+1, e) is invariantly admissibleon Ωi, so e cannot be
safely applied to the systeṁx = f+g(νi+1+e) when the state
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xτ lies in Ωi \ Ωi+1. In this particular case, the best way to
preserve invariant admissibility and ISS is to apply the current
policy u = νi and zero exploratione ≡ 0 until some finite
time t′ ≥ t at which xτ enters intoΩi+1, i.e., xt′ ∈ Ωi+1.

1

Then, as illustrated in Fig. 3, the next policyu = νi+1 and
non-zero exploratione satisfying (32) or (33) can be applied
thereafter without violating invariant admissibility andISS on
Ωi+1. On the other hand, if one can findΩi+1 that contains
Ωi and satisfiesνi ∈ AI(Ωi+1), then the next policyνi+1 and
non-zero exploratione satisfying (32) can be applied any time
sincexτ is already inΩi+1.

Note that in the global case (D = R
n andαi+1, αs ∈ K∞),

the proposed I-RL algorithms can be performed without the
initialization and regeneration ofΩi ande. In the local case,
such processes regardingΩi ande can be also removed when
the exploratione is sufficiently small andxτ starts from a
regionΩ near the origin that is small enough to be contained
by anyΩi+1 satisfyingνi+1 ∈ AI(Ωi+1).

D. NN-Based LS Implementations

The proposed I-RL methods (Algorithms 3–5) can be im-
plemented in the LS sense by using NNs to approximateVi+1

and νi+1. Let {φcj ∈ C1(D)}∞j=1 and {φaj ∈ C0(D)}∞j=1 be
the sequences of real-valued NN activation functions that are
linearly independent and complete on their respective function
spacesC1(D) and C0(D). Here, the superscripts ‘a’ and ‘c’
denote actor and critic, respectively. Using these activation
functions,Vi+1 ∈ C1 andνi+1 ∈ C0 can be represented as

{

Vi+1(x) =
∑∞

j=1 wijφ
c
j(x)

νi+1(x) =
∑∞

j=1 vijφ
a
j (x)

(34)

wherewij ∈ R andvij ∈ R
m; we consider (Nc,Na)-truncation

of (34) as NN expressions ofVi+1 andνi+1:
{

V̂i+1(x) =
∑Nc

j=1 wijφ
c
j(x) ≡ w

T
i φc(x)

ν̂i+1(x) =
∑Na

j=1 vijφaj (x) ≡ V
T
i φa(x),

where



















wi := [wi1, wi2, · · · , wiNc
]T ∈ R

Nc

Vi := [vi1,vi2, · · · ,viNa
]T ∈ R

Na×m

φc(x) := [φc1(x), φ
c
2(x), · · · , φcNc

(x) ]T ∈ R
Nc

φa(x) := [φa1(x), φ
a
2(x), · · · , φaNa

(x) ]T ∈ R
Na .

Using these expressions, (34) can be rewritten as
{

Vi+1(x) = wT
i φc(x) + εci (x)

νi+1(x) = VT
i φa(x) + εai (x),

(35)

whereεci(x) andεai (x) are NN reconstruction errors. Note that
Assumption 1 impliesD is compact. So, there existNc, Na ∈
N such that the NN errorsεci andεai in (35), and∇εci , are all
bounded on the compact setD if Vi+1 ∈ C1 and νi+1 ∈ C0

are finite onD. This boundedness property also holds if the
domain is restricted to a compact subset ofD such asΩνi

di
in

the proposed I-RL algorithms. Also note that sinceVi+1(0) =

1Sinceνi ∈ AI(Ωi) implies asymptotic Lyapunov’s stability, there exists
finite time t′ ∈ [t,∞) such thatxτ ≡ xτ (z; νi, 0) for z ∈ Ωi enters to the
smaller setΩνi

di
⊆ Ωi at t′ under the zero explorationeτ = 0.

0 andνi+1(0) = 0, we haveφc(0) = 0 andφa(0) = 0 without
loss of generality.

Now, consider integralQ-learning I (Algorithm 3) as an
implementation example. In this case, substituting (35) into
the advanced I-TD (31), we obtain

δi(xt, e) =
[

φc(xt+T )− φc(xt)
]T

wi

+

∫ t+T

t

[

r(x, νi(x)) + 2φT
a (x)ViReτ

]

dτ, (36)

whereδi(xt, e) ∈ R is the advanced I-TD error given by

δi(xt, e) = εci(xt)− εci(xt+T )− 2

∫ t+T

t

(εai (x))
TReτ dτ.

Define vi ∈ R
Nam as vi := col{vi1,vi2, · · · ,vim}. Then,

applyingφT
a (x)ViRe =

(

Re ⊗ φa(x)
)T

vi to (36) and then
rearranging the equation, we obtain the following expression
regarding (31):

δi(xt; e) = ψ
T (xt; e) · θi + Z(xt; νi), (37)

whereθi = col{wi,vi} is the vector of unknown weights;
ψ(xt; e) andZ(xt; νi) are given in Table I. The other advanced
I-TDs in Algorithms 2 and 4 can be also formulated as (37)
with θi, ψ(xt; e), and Z(xt; νi) given in Table I for each
advanced I-TD. In Table I, the advanced I-TD errorsδi(xt; e)
for Algorithms 2 and 4 were omitted, but can be easily
obtained by the similar procedure. For policy evaluation of
Algorithm 4, see [12]; in policy improvement of Algorithm 2,
the next neuro-policŷνi+1 can be updated by

ν̂i+1(x) = −1

2
R−1gT (x)∇φc(x)wi (38)

using V̂i+1, instead ofVi+1, as was done in [12].
LetNθ be the number of elements ofθi, e.g.,Nθ = Nc+Na

for (31). Then, we haveNθ unknowns in the 1-dimensional
equation (37). In the implementations,θi will be uniquely
determined in LS sense. Defineψ[k], δi[k], andZ[k] as











ψ[k] := ψ(xt+kT , e),

δi[k] := δi(xt+kT , e),

Z[k] := Z(xt+kT , νi).

Then, referringxt+(k−1)T as a starting point of the advanced
I-TDs, the following generalized I-TD error equation can be
derived from (37):

δi[k] = ψ
T [k] · θi + Z[k], (39)

which holds for anyk ∈ N sincexτ remains in the admissible
regionΩi for all τ ≥ t by (νi, e) ∈ AI(Ωi). Suppose the data
(ψ[k], Z[k]) for k = 1, 2, · · · , N are all available, and define
the LS errorE to be minimized asE2 := 1

2

∑N
k=1 δ

2
i [k]. Then,

differentiatingE2 in terms ofθi with the substitution of (39)
yields

∂E2

∂θi
=

N
∑

k=1

∂δi[k]

∂θi
δi[k] =

N
∑

k=1

[

ψ[k]ψT [k] · θi +ψ[k]Z[k]
]

.
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x = f(x) + g(x)[u + e]
.

u + e

+
+ν     = V  ϕ (x)  ^

i + 1 i a

T

u = ν      ^
i + 1 x

Actor NN (Controller) Nonlinear System

Exploration Generator
exploration e (τ)

Policy Evaluation & Improvement

Find θ  = col{w  , v } satisfyingi i

V    (x) = w  ϕ (x)  
^

i + 1 i c
T

Critic NN (Value Function)

LS Solver

i

V    
^
i + 1

Vi

wi

Fig. 4. The whole control scheme scheme with integralQ-learning I (Algorithm 3) and its LS implementation.

TABLE I
FUNCTIONS AND VECTORS OF EACH ADVANCEDI-TD ERROR EQUATION(37) FOR NN IMPLEMENTATIONS OFALGORITHMS 2–4

Algorithm
No.

Process
Type θi ψ(xt; e) Z(xt; νi)

3 Policy
Evaluation

wi φc(xt+T )−φc(xt)−

∫ t+T

t

∇Tφc(x) ·g(x)eτ dτ

∫ t+T

t

r(x, νi(x)) dτ

4

Policy
Evaluation

&
Improvement

col{wi,vi} col

{

φc(xt+T )−φc(xt),

∫ t+T

t

2φa(x)⊗ (Reτ ) dτ

}
∫ t+T

t

r(x, νi(x)) dτ

5 Policy
Improvement

vi

∫ t+T

t

2φa(x)⊗ (Reτ ) dτ V̂i(xt+T )− V̂i(xt) +

∫ t+T

t

r(x, νi(x)) dτ

Equating this to zero and rearranging the equation, we obtain
the LS solution of the form

θi,LS = −
( N
∑

k=1

ψ[k]ψT [k]

)−1( N
∑

k=1

ψ[k]Z[k]

)

. (40)

For the existence of the unique LS solutionθi,LS , we need
the following excitation condition:

Assumption 4. There existκ5, κ6 > 0 such that

κ5I ≤
N
∑

k=1

ψ[k]ψT [k] ≤ κ6I.

Note that the existence of the inverse in (40) is guaranteed by
Assumption 4. Similar to Assumptions 3a and 3b,N ≥ Lθ

is necessary to satisfy Assumption 4, so at leastLθ-number
of data should be collected to perform the LS (40) at each
iteration.

The whole control scheme with integralQ-learning I and
its LS implementation is demonstrated in Fig. 4. At each
iteration, the LS solver collects the data needed to calculate
ψ[k], δi[k], and Z[k] for k = 1, 2, · · · , N , and then finds
the weight vectorswi andvi satisfying (40), both of which
are transferred to the corresponding actor and critic NNs to
update their weights. Here, the actor NN generates the control
input; the output of the critic NNV̂i+1(x) is used in the
exploration generator module to calculate the bound (32) on
the explorationeτ . In exploration generator, the exploration
eτ is constructed, and modified if necessary, that plays a key
role in exciting the signalψ(xt; e) in (40), and satisfies i)

Assumption 3a (or (29)) and ii) the boundedness condition
(32) for ISS and invariant admissibility. The whole control
scheme with explorized I-PI or integralQ-learning II can be
described in a similar manner by modifying LS solver and
actor NN blocks.

E. An LQR Example: The Global Case

In the CT LQR case, the domainD becomesRn, f(x) =
Ax, g(x) = B, andS(x) = xTSx for some matricesA, B,
andS > 0 with compatible dimensions; the HJB equation (11)
becomes the well-known algebraic Riccati equation

ATP ∗ + P ∗A− P ∗BR−1BTP ∗ + S = 0,

for a positive definite matrixP ∗ ∈ R
n×n. The optimal value

function and policy are given by

V ∗(x) = xTP ∗x, µ∗(x) = −K∗x,

whereK∗ := R−1BTP ∗. By standard LQR theory, it is well-
known that for any stabilizing linear policyµ(x) = −Kx,
V µ(x) exists∀x ∈ R

n, and can be represented asV µ(x) =
xTPµx, wherePµ ∈ R

n×n is positive definite. From this
observation and the proposed nonlinear integralQ-learning I
(Algorithm 3), we obtain the simplified integralQ-learning
I for CT LQR, which is shown in Fig. 5 and is a modified
version of the original integralQ-learning for CT LQR [13].
In this framework,Vi+1 and the next policyνi+1 are exactly
parameterized as

Vi+1(x) = xTPi+1x, νi+1(x) = −Ki+1x,
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[Initialize]

Setε > 0 be a small constant andi = 0;
Setu = −K0x be any stabilizing policy.

Start

[Policy Evaluation & Improvement]

For the linear system

ẋ = Ax+B[u+ e]

with u = −Kix and any bounded exploratione 6= 0,
find Pi+1 > 0 andKi+1 such that for anyxt ∈ R

n,

x
T
t Pi+1xt − x

T
t+TPi+1xt+T (41)

=

∫ t+T

t

[

x
T
Sx+ u

T
Ru+ 2xT

K
T
i+1Reτ

]

dτ.

‖Ki+1−Ki‖ < ε? Endno
i← i+ 1

yes

Fig. 5. Simplified integralQ-learning I for CT LQR.

with zero reconstruction errorsεci(x) = 0 and εai (x) = 0
for all x ∈ R

n. Hence, if the parametersPi+1 and Ki+1

are uniquely determined by (40) that solves (41) in Fig. 5,
then we haveθi,LS = θi. In other words, Assumption 4 is
sufficient to guarantee the uniqueness of the target solution
Pi+1 = P νi andKi+1 = R−1BTP νi ; the other excitation
condition oneτ such as Assumptions 3a or 3b are not required
to obtain the unique solution. From this, we can see that under
Assumption 4, ISS holds globally by Theorem 2 for any initial
condition z ∈ R

n and any bounded exploratione since we
haveανi(x) = σ(P νi )‖x‖2 and αs(x) = σ(S)‖x‖2, both
of which are obviously of classK∞. Therefore, in the LQR
case,Ωi = R

n ∀i ∈ Z+, so the invariantly admissible pair
(Ωi+1, e) does not need to be updated at eachi-th iteration—
any bounded non-zero exploratione guaranteeing Assumption
4 for updating(Pi+1,Ki+1) is sufficient to run the algorithm
correctly, as shown in Fig. 5 and explained in this section. The
other proposed I-RL algorithms (Algorithms 2 and 4) can be
also simplified and analyzed in LQR frameworks in a similar
manner to integralQ-learning I, and the analysis results in the
same conclusions.

VI. N UMERICAL SIMULATIONS

In this section, the proposed I-RL methods are simulated to
verify the effectiveness of the proposed I-RL algorithms and
the correctness of the relevant theories presented in this paper.
In the simulations, we consider the nonlinear system

{

ẋ1 = −x1 + x2

ẋ2 = −(x1 + x2)/2 + x2h
2(x1)/2 + h(x1)u,

(42)

with a nonlinearC1-functionh(x1), and the costr(x, u) with
S(x) = x21 + x22 andR = 1. By the converse HJB approach
[35], the optimal solution is given by

V ∗(x) = x21/2 + x22 andµ∗(x) = −x2h(x1).

In this case,S(x) is quadratic, and the nonlinear system
(42) can be approximated near the origin by a linear system.
Therefore, by the standard LQR theory [26], [27],V µi can be
approximated by a quadratic function near the origin (see also
[9, Remark 3.1.8]); we choosewi andφc(x) in the critic NN
V̂i+1(x) = w

T
i ψc(x) as

wi = [wi1, wi2, wi3 ]
T , φc(x) = [x21, x1x2, x

2
2 ]

T . (43)

To determine the appropriate actor NN structure, we substitute
(43),R = 1, andg(x) = [0, h(x1)]

T to (38), which results in

ν̂i+1(x) = −1

2
wi2 · x1h(x1)− wi3 · x2h(x1). (44)

Now, assume thath(x1) can be represented as

h(x1) = ϑTψ(x1) + εh(x1), (45)

with the weight vectorϑ ∈ R
M , the nonlinear regression

functionψ(x1) ∈ R
M , and the bounded approximation error

εh(x1); M is the number of weights. Then, (44) becomes

ν̂i+1(x) = (v+
i )

Tρ(x) + ε̄h(x),

wherev+
i , ρ(x) ∈ R

2M are defined as

v
+
i := −[wi2/2, wi3 ]

T ⊗ ϑ andρ(x) := x⊗ ψ(x1), (46)

and ε̄h(x) is given by ε̄h(x) = −(wi2x1/2 + wi3x2)εh(x1),
which is obviously bounded in a compact set. From this result,
we choosevi andφa(x) in the actor NNν̂i+1 = v

T
i φa(x) as

vi = [ vi1, vi2, · · · , vi2M ]T andφa(x) = ρ(x).

Note that the actor NN is used in integralQ-learning I and
II to find the next policyν̂i+1 with vi ≈ v

+
i whenh(x1) (or

ϑ) is not known. Ifh(x1) is perfectly known, then (38) can
be used to directly compute the next policyν̂i+1 as was done
in policy improvement of explorized I-PI. At eachi-th step,
wi and/orvi will be updated by the LS solution (40) afterN
data samples(ψ[k], Z[k]) (k = 1, 2, · · · , N ) are collected. In
the simulations, the objective of the proposed I-RL methods
is to find the optimal weight vectorsw∗ and/orv∗ given by

w
∗ = [ 1/2, 0, 1 ]T andv∗ = v

+
i |wi=w

∗ = −[ 0T , ϑT ]T .

A. Simulation Example 1

For the comparison with I-PI (Algorithm 1) in [12], we
first consider the nonlinear system (42) withh(x1) = sin(x1),
which can be represented by (45) withϑ = 1, ψ(x1) = sinx1
andεh(x1) ≡ 0. In this case,vi andφa(x) are given by

vi = [ vi1, vi2 ]
T andφa(x) = [x1 sinx1, x2 sinx1 ]

T .

TABLE II
(EXAMPLE 1) THE NUMBER OF COLLECTED DATA PER ITERATION

Process Type & Algorithm No. N Nθ

Policy Evaluation of Algorithm 2 30 3
Policy Evaluation & Improvement of Algorithm 3 50 5
Policy Evaluation of Algorithm 4 30 3
Policy Improvement of Algorithm 4 20 2
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Fig. 6. (Example 1) Evolution of critic/actor weights for Algorithms 3–5.

As in [12, Section 6.1], the initial admissible policy is given
by µ0(x) = − 3

2 sin(x1)(x1 + x2); the initial statex0 at t = 0
and the sampling periodT are set tox0 = [ 0.5, −0.5 ]T and
T = 0.1 [s], respectively; the number of data,N , collected per
iteration is determined by ‘N = 10 × Nθ’ for each process,
as demonstrated in Table II. Note that all of these settings
correspond to the simulation in [12, Section 6.1], whereN =
30 was used underNθ = 3 as well. In the simulations of
Algorithms 2 and 3, we usedeτ given by

eτ =

{

c for all τ ∈ [t, t+NT/2),

−c for all τ ∈ [t+NT/2, t+NT ),
(47)

with c = 2.5. In policy improvement of Algorithm 4, we used

eτ = 3.5 for all τ ∈ [t, t+NT ). (48)

Notice that these explorations (47) and (48) satisfy Assump-
tions 3a and 3b, respectively, if one considers the extended
time interval[t, t+NT ), instead of[t, t+T ). The update step
of (Ωi, e) is omitted in these simulations for simplicity (see
[10] for an example of updatingΩi in IA-PI), so the samee
will be applied for all iteration steps.

Fig. 6 demonstrates the simulation results in the iteration
domain—(a) the variations ofwi generated by the proposed I-
RL methods (Algorithms 3–5), and (b) the evolution ofvi gen-
erated by model-free integralQ-learning I and II (Algorithms 4
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Fig. 7. (Example 1) Trajectories of the state variables (a)x1(τ) and (b)
x2(τ) for Algorithms 2–4. The marked points indicate the time instants the
critic and/or actor NN weights are updated.

and 5). As shown in Fig. 6(a), all the critic weightswi at each
iteration are very close to those in [12, Section 6.1], showing
the equivalences of all the proposed I-RL methods and I-
PI in the iteration domain under the uniqueness condition.
The actor NN weightsvi in Fig. 6(b) are also close to each
other at each iteration. Moreover, as shown in Fig. 6, both
weightswi andvi converge to their optimal values within a
few iterations, which is due tothe second-order convergence
nature of I-PI and PI in the iteration domain[13], [17], [21],
[36]. Fig. 7 shows the state trajectories, which are all bounded
but oscillatory due to the exploratione applied for both the
excitation ofψ[k] and online learning in partially/completely
unknown dynamics(f, g). In I-PI [12, Section 6.1],g(x)
should be known and there is no way to re-excite the signal
because of the absence of the exploratione.

B. Simulation Example 2

In this example, integralQ-learning I is applied to the
nonlinear system (42) withh(x1) = cos(2x1)+2. This system
was also used in [22], [24] to simulate their synchronous
actor-critic learning methods. As was done in [22], the weight
vectorwi of the critic NN is initialized tow0 = [1, 1, 1]T ;
the corresponding initial actor NN weight vector is given by
v0 = v

+
0 = −[1/2, 1] ⊗ ϑ. The states are initialized to zero,

i.e, x0 = [0, 0]T ; we setN = 40 andT = 25 [ms], so the LS
solution (40) is calculated every1 [s]. The exploration scheme
(47) with c = 1 is used to hold Assumption 3a.
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Fig. 8. (Example 2) Cases 1 and 2:Evolution of critic weightswi generated
by integralQ-learning I.

Case 1:first, we assumeh(x1) is linearly parameterized as
h(x1) = ϑTψ(x1) with zero approximation errorεh(x) ≡ 0,
whereϑ andψ(x1) are given by

ϑ = [ 1, 2 ]T andψ(x1) = [ cos(2x1), 1 ]T .

From this,vi andφa in the actor NN are determined asvi ∈
R

4 and φa(x) = [x1 cos(2x1), x1, x2 cos(2x1), x2 ]
T , and

the optimal actor NN weightsv∗ are given by

v∗ = −[ 0T , ϑT ]T = [0, 0, 1, 2]T .

The simulation results are shown in Figs. 8 and 9. As shown
in Figs. 8 and 9(a), the weights in the critic and actor NNs
converge to their respective optimal ones within 3 iterations;
Fig. 9(b) illustrates the optimal policy approximation error
at i = 6, which is very small (≤ 10−10), showing the
effectiveness of the proposed integralQ-learning I.

Case 2:next, assumeh(x1) in g(x) is completely unknown
and consider its expression (45) withM = 7 andψ(x) given
by ψ(x1) = [1 x1 x

2
1 x

3
1 x

4
1 x

5
1 x

6
1]

T . From this and (46), the
activation functionφa(x) ∈ R

14 of the actor NN can be
determined asφaj (x) = xj1 for 1 ≤ j ≤ 7 andφaj (x) = xj−8

1 x2
for 8 ≤ j ≤ 14. The unknown vectorϑ in (45) and in
the optimal actor NN weightv∗ can be also obtained as
ϑ = [3, 0, −2, 0, 2/3, 0, −4/45]T from the Taylor expansion
of h(x1) at x1 = 0:

h(x1) = cos(2x1) + 2 = 3− 2x21 +
2x41
3

− 4x61
45

+O(x81).

The simulation results in Case 2 are demonstrated in Figs.
8 and 10. As can be seen from Fig. 8, the critic NN weights
at each iteration are almost equal to those in Case 1, which
converge to the optimal ones. The final critic NN weights
wi at i = 6 in Case 2 isw6 = [0.5000, 0.0000, 1.0000]T

and Fig. 10(a) shows the corresponding approximation error
of the optimal value function. Here, the maximum error is
smaller than10−8, showing the good performance of integral
Q-learning I. The optimal and final weightsv∗ andvi at i = 6
of the actor NN are shown in Table III. Though the error
‖v6j − v

∗
6‖ for eachj is very small, as shown in Table III,

the approximation errors of the optimal policy shown in Fig.
10(b) is relatively high compared with those in Fig. 9(b). These
errors are due to the approximation of the unknownh(x1), but
can be decreased by incorporating higher-order terms likex91
andx2x81 into the actor NN.

Discussions: As opposed to the synchronous actor-critic
methods [22], [24], where the actor NN with the same structure
to the critic NN was introduced for the closed-loop stability,
the proposed integralQ-learning methods introduce the actor
NN for model-free learning, and as shown in this example,
its structure is determined by appropriate procedures when
g(x) contains some structural/parametric uncertainties. This
makes it possible to learn the online optimal control solution
without knowing the nonlinear dynamics(f, g) and without
introducing the complex identifier NN structure (see [24] for
actor-critic-identifier architecture).

As shown in Figs. 8 and 9(a), the NN weights almost
converge at 2 [s], showing that the convergence time is similar
to the actor-critic-identifier method in [24], and faster than
the model-based actor-critic method in [22]. On the other
hand, whenh(x1) is linearly parameterized (Case 1), the
approximation error of the optimal control policy is far smaller
than the actor-critic methods [22], [24] as shown in Fig. 9(b).
These fast, accurate convergence results are mainly due tothe
second-order convergence nature of PI and I-PI methods in the
iteration domain[13], [17], [21], [36]. As shown in Fig. 10(a),
the approximation error of the optimal value function is also
very small even whenh(x1) is completely unknown (Case 2).
In this case, however, the approximation error of the optimal
control policy is relatively large compared to the actor-critic
methods [22], [24]. This is due to the approximation error
ε̄h(x), which can be made sufficiently small by increasing
the number of neurons. Though the proposed I-RL methods
show the good convergence properties, they require an initial
admissible policy, while the synchronous methods do not [22],
[24]. This restriction can be relaxed if the I-RL methods are
developed based on VI [21] or generalized PI [17], [21], rather
than PI, which is the future work of this paper.

VII. C ONCLUSIONS

In this paper, we proposed one partially model-free I-RL
method named explorized PI and two completely model-free
I-RL methods named integralQ-learning I and II, the objective
of all of which is to find the online solution to the given CT
nonlinear optimal control problem with input-affine dynamics.
All the proposed methods are able to simultaneously and stably
explore the state-space during the learning phase. To develop
the methods, the concepts of exploration, I-TD, and invariant

TABLE III
(EXAMPLE 2) CASE 2: THE ACTOR NN WEIGHTSv6 AND v

∗

j v
6j v∗j j v

6j v∗j j v
6j v∗j

1 0.0000 0 6 0.0000 0 11 0.0000 0
2 0.0000 0 7 0.0001 0 12 -0.6667 -2/3
3 0.0000 0 8 -3.0000 -3 13 0.0000 0
4 0.0000 0 9 0.0000 0 14 0.0889 4/45
5 0.0000 0 10 2.0000 2
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Fig. 9. (Example 2) Case 1:Simulation results when the policy is exactly
parameterized—(a) evolution of the actor NN weightsvi and (b) optimal
control policy approximation error

admissibility were all extended to the CT nonlinear input-
affine dynamical system governed by a control policy and
an exploration, and then analyzed in details in connection
to the proposed I-RL methods, I-PI, and IA-PI. We have
also shown that the proposed I-RL methods are all equal
to I-PI and IA-PI in the iteration domain, under the given
excitation condition on the exploration for the uniquenessof
the I-TD solutions. As a result, ISS, invariant admissibility,
and convergence properties of the proposed I-RL methods
were all given as well, and discussed in details, under the
well-designed explorations satisfying the required excitation
and boundedness conditions. The NN-based implementation
methods of the proposed methods were also presented, and
their performance was verified by numerical simulations and
compared with the other methods.
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APPENDIX A: PROOF OFLEMMA 1

The proof will be done by contradiction. Forµ(x) ∈ A(Ω),
assume that there exists another functionV ∈ C1(Ω) that is
positive definite and satisfies the Lyapunov equation

H(x, µ(x),∇V (x)) = 0 ∀x ∈ Ω, V (0) = 0. (49)

From (49), r(x, u) > 0, and the definition ofH , we have
(∇V (x))T (f(x)+g(x)µ(x)) < 0, ∀x ∈ Ω\{0}, which again
implies∇V (x) 6= 0 andf(x) + g(x)µ(x) 6= 0 ∀x ∈ Ω \ {0}.
Subtracting (49) from (8) yields

H(x,µ(x),∇V )−H(x, µ(x),∇V µ)

= [∇V (x)−∇V µ(x)]T · (f(x) + g(x)µ(x)) = 0,

which holds∀x ∈ Ω. Therefore, we obtainV (x) = V µ(x)+c
for a constantc, ∀x ∈ Ω \ {0} sincef(x) + g(x)µ(x) 6= 0
∀x ∈ Ω \ {0}. Here,V (0) = V µ(0) = 0 results inc = 0
and thereby,V (x) = V µ(x) is obtained for allx ∈ Ω, a
contradiction. Therefore, the value functionV µ is the unique
solution of (8) overC1(Ω), the completion of the proof.

APPENDIX B: PROOF OFTHEOREM 2

Sinceµ0 ∈ A(Ω0), Assumption 2 and Theorem 1 imply that
for anyi ∈ Z+, Ωi+1 is in the interior ofD, V µi ∈ C1(Ωi+1),

andµi andµi+1 are invariantly admissible onΩi+1. So,µi

andV µi satisfy (8) withµ = µi, i.e., for all x ∈ Ωi+1,

(∇V µi(x))T (f(x) + g(x)µi(x)) = −r(x, µi(x)). (50)

Then, differentiatingV µi(x) along the trajectoryx(z;µi+1, e)
and substituting (12) and (50) yield

V̇ µi(x) = (∇V µi(x))T (f(x) + g(x)[µi+1(x) + e])

= −r(x, µi)− 2µT
i+1Re− 2µT

i+1R(µi+1 − µi).

Applying Young’s inequality2xTRy ≤ xTRx + yTRy for
x, y ∈ R

m, we obtain

V̇ µi(x) ≤ −S(x) + eTRe, (51)

which can be further expanded usingαs(‖x‖) ≤ S(x) and
V µi(x) ≤ ᾱµi

(‖x‖) (see (4) and (5)) as

V̇ µi ≤ −(1−θ)S(x)−θα̂
(

V µi(x)
)

+σ̄(R)·
(

sup
t≤τ<∞

‖eτ‖2
)

,

whereα̂ := αs ◦ ᾱ−1
µi

is of classK and defined on the interval
[0, ᾱµi

(rd)] by Assumption 1 and [34, Lemma 4.2];θ ∈ (0, 1)
is a constant satisfying

sup
t≤τ<∞

‖eτ‖2 < θ · α̂
(

di
)

/σ̄(R), (52)

Since we assume the exploratione satisfies (18), suchθ always
exists in(0, 1). Therefore, we have

V̇ µi(x) ≤ −(1− θ)S(x), (53)

for all x ∈ Ωi+1 satisfyingV µi(x) ≥ ri, whereri is given by

ri ≡ α̂−1

(

σ̄(R) ·
(

supt≤τ<∞ ‖eτ‖
)2

θ

)

. (54)

Now, substituting (52) into (54) and rearranging the equation
yieldsri < di. Hence, noting thatΩi+1 = Ωµi

di
by Assumption

2, we can conclude that

Ωµi
ri

= {x ∈ D : V µ
i (x) ≤ ri}

is in the interior ofΩi+1, and (53) holds for allx ∈ Ωi+1\Ωµi
ri

.
This impliesV̇ µi is negative definite on the boundary∂Ωi+1,
soxτ (z;µi+1, e) starting inz ∈ Ωi+1 stays inΩi+1 for all τ .
That is,e ∈ AI(Ωi+1;µi+1).

Next, Assumption 1 and Theorem 1 imply thatΩi+1 is in
the interior ofB0(rd), so we haveΩµi

ri
⊂ Ωi+1 ⊂ B0(rd).

Applying (4) and (5) to (53) to prove ISS, we obtain

V̇ µi(xτ ) ≤ −(1− θ)α̂(V µi(xτ )) (55)

≤ −(1− θ)α̂(ri) ≡ −k < 0 (56)

for all xτ ∈ Ωi+1 \Ωµi
ri

, Hence, (56) ande ∈ AI(Ωi+1;µi+1)
imply that for anyz ∈ Ωi+1 \ Ωµi

ri
, there ist′ > t such that

{

xτ (z, µi+1, e) ∈ Ωi+1 \ Ωµi
ri

for all τ ∈ [t, t+ t′),

xτ (z, µi+1, e) ∈ Ωµi
ri

for all τ ≥ t+ t′.

Assumeα̂ is locally Lipshitz without loss of generality2 and
let vτ be the solution to the scalar differential equationv̇τ =

2See the proof of [34, Theorem 4.9].
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−(1 − θ)α̂(vτ ) under the initial conditionv(t) = V µi(z).
Then, [34, Lemma 3.4 and Lemma 4.4] and (55) show that
there isβv ∈ KL, defined on[0, ᾱµi

(rd)], such that

V µi(x(τ)) ≤ v(τ) = βv
(

V µi(z), τ − t
)

,

for any initial conditionz ∈ Ωi+1 \ Ωµi
ri

and all τ ∈ [t + t′).
Therefore, using (4) yields the following inequality:

‖xτ‖ ≤ α−1
µi

(

V µi(xτ )
)

≤ α−1
µi

◦ βv
(

V µi(z), τ − t
)

≤ α−1
µi

◦ βv
(

ᾱµi
(‖z‖), τ − t

)

≡ β(‖z‖, τ − t
)

, (57)

whereβ(y, s) ≡ α−1
µi

◦ βv
(

ᾱµi
(y), s

)

is of classKL by [34,
Lemma 4.2]. On the other hand, for allxτ ∈ Ωµi

ri
, we have

V µi(xτ ) ≤ ri, and from (4) and (54),

‖xτ‖ ≤ α

(

sup
t≤s<∞

‖e(s)‖
)

, (58)

whereα(y) ≡ α−1
s

(

σ̄(R)y2/θ) is of classK [34, Lemma
4.2]. Finally, (57) and (58) imply that for allz ∈ Ωi+1 and all
τ ≥ t, the trajectoryxτ (z;µi+1, e) satisfies the inequality

‖xτ‖ ≤ β(‖z‖, τ − t
)

+ α

(

sup
t≤s<∞

‖e(s)‖
)

, (59)

under (18). Here, instead of[t,∞), the supremum on the right
hand side can be chosen over[t, τ ] sincexτ depends only on
e(s) for t ≤ s ≤ τ . This completes the proof of the local ISS.
For the global caseD = Ωi = R

n, αµi
, ᾱµi

, αs, andᾱs are all
defined on[0,∞), andαµi

∈ K∞ implies ᾱµi
∈ K∞ by (4).

Therefore,di and the upper bound in (18) can be arbitrarily
large, so ISS holds for arbitrary exploratione. Furthermore,
the initial conditionz can be also arbitrarily chosen sinceΩµi

ri

with ri (< di) defined in (54), and thereby,Ωi+1 (⊃ Ωµi
ri

) can
be extended toRn by increasingdi (or ri) to ∞ to include
any given initial statez ∈ R

n, the completion of the proof.

APPENDIX C: PROOF OFTHEOREM 3

Note that(µ, e) ∈ AI(Ω) implies xτ (z;µ, e) lies entirely
in Ω, for all τ ≥ t. So,V ∈ C1(Ω) satisfies

V (xt+T )− V (xt) =

∫ t+T

t

V̇ (xτ ) dτ, (60)

for any initial valuext = z ∈ Ω, where the time derivative
V̇ (xτ ) is given by

V̇ (xτ ) = ∇TV (xτ ) · (f(xτ ) + g(xτ )[µ(xτ ) + eτ ]). (61)

Defining H(x, e) := H(x, µ(x),∇V (x)) − 2ϕT (x)Re and
substituting (60) and (61) into the I-TD (19), we obtain

∫ t+T

t

H
(

xτ (z;µ, e), eτ
)

dτ = 0. (62)

Therefore, finding the solution of the advanced I-TD (19) for
all xt = z ∈ Ω is equivalent to solving (62)∀z ∈ Ω. Since
xτ (z;µ, e) ∈ Ω for all τ ≥ t + T , following the same steps
with starting timet+MT , instead oft, yields

∫ t+(M+1)T

t+MT

H
(

xτ (z;µ, e), eτ
)

dτ = 0, ∀M ∈ Z+.

Then, summing up the integrals for allM ∈ Z+, we obtain

h(t; z) ≡
∫ ∞

t

H
(

xτ (z;µ, e), eτ
)

dτ = 0.

That is,h(t; z) = 0 for all t ≥ 0 and all z ∈ Ω. So, we have
ḣ(t; z) = −H

(

xτ (z;µ, e), eτ
)

|τ=t = 0, and thereby,

H
(

z, et
)

= 0, ∀t ≥ 0 and∀z ∈ Ω. (63)

Sincee is T -periodic, i.e., eτ = eτ+T for all τ ≥ t, (63) is
reduced to

H
(

z, eτ
)

= 0, ∀τ ∈ [t, t+ T ) and∀z ∈ Ω,

which is equivalent to (20). The proof of the opposite direction
can be easily done by first integrating (20) and then substitut-
ing (60) and (61).
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