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Abstract—This paper focuses on a class of reinforcement ii) exploration/exploitation both of which now become the

learning (RL) algorithms, named integral RL (I-RL), that solve
continuous-time (CT) nonlinear optimal control problems with
input-affine system dynamics. First, we extend the conceptsf
exploration, integral temporal difference, and invariant admissi-
bility to the target CT nonlinear system that is governed by a
control policy plus a probing signal called an exploration.Then,
we show input-to-state stability (ISS) and invariant admisibility
of the closed-loop systems with the policies generated bytex
gral policy iteration (I-PI) or invariantly admissible PI ( 1A-PI)

method. Based on these, three online I-RL algorithms named

explorized I-PI and integral Q-learning I, Il are proposed, all of

fundamental components in RL [2]-[4].

TD error is one step prediction error, indicating how far
the estimated value function is from the true one for the
current policy [1]-[4]. Here, the value function, and itdian-
dependent version calle@-function, implicitly express the
long-term performance index for the current policy, andypla
a central role in modifying the agent’s current policy in RL.
All RL methods equip at least one update rule, the objective
of which is to estimate the value function (@-function) by

which generate the same convergent sequences as I-Pl and IA-decreasing the associated TD error [7]-[25].

PI under the required excitation condition on the exploration.
All the proposed methods are partially or completely model-
free, and can simultaneously explore the state-space in aaftle
manner during the online learning processes. ISS, invarianad-

missibility, and convergence properties of the proposed nibods
are also investigated, and related with these, we show the sign
principles of the exploration for safe learning. Neural-néwork-

based implementation methods for the proposed schemes arksa
presented in this paper. Finally, several numerical simultions are
carried out to verify the effectiveness of the proposed meitds.

Index Terms—reinforcement learning, policy iteration, adap-
tive optimal control, Q-learning, continuous-time, exploration

|I. INTRODUCTION

Associated with the exploration/exploitation in RL, thése
an exploitation vs. exploration dilemm&], [4]: to achieve
an improved response, the RL agents shoeigloit the
information they obtain, but at the same tinegplore the
whole environments to improve future actions. In RL methods
for MDPs, a sufficient number of explorations of each state-
action pair is required for the learning of best responsd, an
thus exploitation and exploration should be properly bedah
during the learning period [3]-[5]. In this paper, we focus o
the exploitation/exploration issues and TD learning metho
in RL applied to continuous-time (CT) dynamical systems for
adaptive optimal control.

EINFORCEMENT LEARNING (RL) is a class of learn-A. HJB Equations, TD Error, and PI in Optimal Control
ing algorithms that originates from and is inspired by In the fields of control system engineering, optimal control
biological animal learning mechanisms, and is designed ftigeories have been developed as one of the fundamental

learn the best policy by interacting with a givemknown

principles in the design of modern control systems [26],

environment to maximize their long-term performance [1]{27]. The optimal control policy minimizes a given longiter
[4]. From the very beginning of the research, RL methodsst-to-go function, which specifies the desired perforrean
have been extensively studied in the fields of computationgith respect to the system states and control inputs in the
intelligence, with special focus on the finite Markov demisi long run, implicitly balancing the amount of required catr
process (MDP) [3]. As a result, a variety of RL algorithms irfforts and the desired transient response. Basicallyh suc
MDP environments have been proposed, including Saysa, minimizing policy can be found using either Pontryagin’s

learning, and actor-critic methods, with successful agpions

minimum principle or dynamic programmindgoth optimal

[2]-[6] (see [6] for survey). These RL methods were devetbpgontrol approaches, however, are intrinsically off-linexch

based on the two core ideay:temporal difference (TDand
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require complete knowledge of the system dynamics.

In optimal control problems, the centerpiece of dynamic
programming is the Hamilton-Jacobi-Bellman (HJB) equatio
[26]-[28] which is termed as the Bellman’s optimality equa-
tion in the field of computational intelligence (see [2]9[4]
The optimal value function and control policy can be obtdine
by solving the HIB equation. However, this is a formidable
task even in the case of completely known dynamics due to
the intractability of the HJB partial differential equati@nd
a problem known ashe curse of dimensionality
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To alleviate these problems, researchers in the fields the PE conditions required to learn the targptimal policy
both control systems and machine learning have studiadd the value function (oQ-function). Among these RL
the forward-in-time computational methods known as polignd ADP methods, the iterativ@-learning schemes based
iteration (PI) [7]-[17] and value iteration (VI) [17]-[20] on PI [13]-[16] and VI [18] have revealed that the probing
Both methods consist of two processgselicy evaluatiorand noises, called explorations in our previous works [13],]{14
policy improvementand the difference between Pl and VI lieplay a central role in relaxing the requirements of the syste
in policy evaluation (see [1], [3], [21] for a comprehensive model dynamics. The key point here is that by virtue of
derstanding). Unlike VI, Pl minimizes the associated Toerrthe explorations, these learning controllers can be agppbe
at each step of policy evaluation to compute the exact valagstems wittcompletely unknown dynamitsfind the optimal
function which can be considered as a Lyapunov function policy in an online fashion with guaranteed convergence.
many cases [1].

Combining the forward-in-time computational methods wite- CT Nonlinear Adaptive Optimal Control
neural networks (NNs) in discrete-time (DT) domain, Werbos In CT domain, RL and ADP algorithms to solve the HIB
[19] and years after, Prokhorov and Wunch [20] proposextjuation were developed without any proof of their stapilit
adaptive dynamic programming (ADP) methods for optimand convergence at first. After the pioneering works of [11],
neuro-control. In these methods, one NN caletic plays a [12], [21], a class of RL methods named integral RL (I-
role of policy evaluation for approximating the value fuoat RL) was presented with stability and convergence studies fo
(or Q-function), and the other NN calleakctor learns the im- solving CT input-affine nonlinear optimal control problems
proved policy as a role of policy improvement. Independentlvith unknown system drift dynamics (see [1] for a compre-
of these works, the inverse optimal neuro-control methotiensive survey). These I-RL methods are based on Pl and VI
[29], [30] are developed, where the cost functioa igosteriori in the CT domain which minimize or decrease the associated
determined for the stabilizing feedback. In the inversénoglt integral TD (I-TD) error at each step. For the I-RL schemes
approach, one does not need to solve the HIB equation, Beveloped from PI [7]-[9] in particular, which we call intad)
cannot freely choose the required cost function unlike tHd (I-Pl) in this paper, the stability and convergence to the
aforementioned ADP methods. The proposed RL methodgtimal solution are proven under the initial admissibléqyo
in this paper are a kind of online Pl combined with NNs[12]. The implementation methods based on least squargs (LS
which efficiently find, by forward-in-time computation, theand the Galerkin NN approximation were also presented in
CT optimal control solution satisfying the underlying HIJH12]. However,all the underlying I-RL methods require exact
equation, where the cost function is givarpriori. knowledge of the input-coupling dynamics [1], [21], which
restricts the practical use of the algorithn&econd, unlike RL
schemes for DT dynamical systems [16], [1#Bjere is no way
to simultaneously explore the state-space for the satisfac

Until recently, the exploitation and exploration issues inf PE conditions during online learningresetting the state
control systems have been posed from the perspectivesvafiables to some non-zero points is the only way in these |-
adaptive/neural control, with the direct connection to thRL methods [1], [12], [21] to give additional excitationsttoe
notion of persistent excitation (PE) [31], [32], [33, Secti state variables. Lastlyhe given initial admissible region in |-
7.6.2]. Without satisfaction of PE conditions, the leaginPI is not invariant for the intermediate closed-loop system
parameters cannot converge to the true values. On the othethat the state trajectory may escape the well-definedestab
hand, PE conditions make the system states and conwadion during the learning phase, especially at the timéains
inputs oscillatory, not convergent to the equilibrium, anthe policy is updated10].
even cause unbounded closed-loop responses in many caseéSpr the same CT optimal control problems, these ideas
especially when the states escape the stable region of tfid-RL are combined with adaptive control methodologies,
nonlinear systems [32], [33, Section 8.2]. In this respeand the resulting online actor-critic RL methods, called-sy
the exploitation vs. exploration dilemma can be reinteigite chronous PI, were recently proposed in [22]-[25]. These
from a control theoretic perspective as a dilemma between timethods simultaneously update the actor and critic NNs in an
satisfaction of PE (efficient exploration) and the satigfac online fashion, and the stability of the RL control system is
control performance (exploitation to improve the stapiind proven under the assumption of PE. Though exhibiting novel
state convergence). ideas,they require complete/partial knowledge of the system

Without considering the optimality of the target controtynamics [22]-[24] and/or an additional NN to identify the
policy, considerable efforts have been made to design system dynamics [24], [25]In our previous work [13], we
adaptive controller which efficiently balances the expitiitn combined I-Pl with both CTQ-function and exploration to
and exploration for good transient performance by regujati develop two online advanced I-RL algorithms: explorized Pl
the magnitudes of the exploratory random signals injecteaid integral)-learning (see also [15] for a similar model-free
through the control input channels [31], [32], [33, Sectioalgorithm). Both algorithms can explore the whole stateesp
7.6.2]. Similar adaptive optimal control schemes for dyitain and the latter can be applied to completely unknown dynamics
systems have been also presented in the areas of RL &mivever,these algorithms were focused only on solving CT
ADP [13]-[18], [22]-[24], where the so-called probing negs LQR problems and were not extended to general CT nonlinear
are injected through the control input channels to maintagptimal control frameworks.

B. Exploitation and Exploration in Adaptive Optimal Corltro
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D. Contributions in R™, “Q; C Q" and “Q; C Q5" indicate thatQ; is a
Based on I-PI in [12] and IA-PI in our recent work [10],subset and a proper subset(of, respectively;0Q2; denotes

this paper proposes the three partially/completely mdmbel- the bounqiary off2;. For a given do.mainD < R, thg set
I-RL algorithms, all of which are extensions of the work [13Pf all continuous and continuously differentiable funasoare

to CT nonlinear optimal control with input-affine dynamicsdenoted byC®(D) andC* (D), respectively.

and use NNs to approximate the value function and contmkfinition. A functionV : D — R, is said to be positive

policy. Here, I-PI and IA-PI provide the basic ideas of Idefinite (onD) if it is continuous onD, V(0) = 0, and
TD and invariant admissibility (the combined concept of

invariance and admissibility), respectively. All the posed V(z) >0, VxeD\{0}.
methods can simultaneously and stably explore the st@&esppefinition. A continuous functiony 0,a) — [0,00) is of

during online learning, and can update the given admissiliss i, denoted bya € K, if it is strictly increasing and
region and the exploration signal to guarantee inputdtest ) — 0. A classK functiona is of classk.., denoted by
stability (ISS) and invariant admissibility. Moreover, the Koo, if a = 00, andlim, s a(r) = oc.

best authors’ knowledge, the two methods out of the three, ) ]
named integrafy-learning | and I, respectively, are the firstPefinition. A continuous functiog : [0, a) x[0, 00) — [0, 00)
ones that can learn the online optimal solutioncompletely iS of classK., denoted by3 € KL, if 5(,s) € K for
unknown dynamics without any use of the additional identifiach fixeds, and for each fixed:, 5(r,-) is decreasing and
NN, which was not achieved by any existing methods [12(7:s) = 0 ass — oc.
[2_2]—_[25]. In the proposed meth(_)ds, the cost fu_nc_tiorais ~ We denote the gradient of a functigh: D C R* — R by
priori that can be freely chosen without such restrictions as in .
inverse optimal approaches [29], [30]. _[0f(z) Of(z) of (x) n

H Vf(l')— “a.. y Ty T ER,

To develop the I-RL methods, this paper extends the con-

8501 ’ 6x2 8xn

cepts of exploration, I-TD, and invariant admissibility tioe wherez; (1 < j < n) is the j-th element ofz € D. For a
CT nonlinear input-affine dynamical system that is govem?/%ctor-valueafunztiorf(x) _ [fl(a?) Fa(2), - f (x)}Te

by a control policy and a probing signal called an explomtioRm Vf(x) is meant to be a matri>’< of thé firsvt-or;bder deriva-
Then, we mathematically show i) ISS and invariant admis%Ve’S of the form
bility regarding both explorations and policies generalgd

either IA-PI or I-PI, and ii) the excitation condition on the  Vf(z):= [Vfi(z), Vfa(2), -, Vfm(z)] € R"*™.
exploration to uniquely solve the advanced I-TD equation.
This unique solution is equal to the solution to the I-T

equation used in 1Pl [12] and the associated Lyapunov eq e specified time instart In addition, any functiors(r) of

tion used in PI [9] and IA-PI [10]. From these mathematict Il be denoted implvs f .
results, we propose one partially model-free I-RL method"€ ™ Wi D€ denote as(r), s, or simplys for conciseness.

named explorized I-PI, and two model-free I-RL methods
named integraf)-learning | and I, respectively. ISS, invariant
admissibility, and convergence properties of the propogeid Consider the following CT input-affine nonlinear system:
methods, related with the design of explorations, are dlsng . n
under the uniqueness condition. Finally, NN-based aditicc or = f(2r) +g(wr)ul@r), 2(t) =z€DCR (1)
LS implementation methods are presented, and we simulateerez € R™ andu € R™ are the state variable and the
the proposed I-RL methods to verify their performance and t@ntrol input;z is the state value at given initial time instant
compare them with the others [12], [22], [24]. T = t; D C R" is a set containing a neighborhood of the
origin; f : D — R™ with f(0) = 0 andg : D — R™*™
are nonlinear functions that are locally Lipschitz &n For
simplicity, we restrict our domain of interest to a neightaod

In this paper, the following notations are adopted for a regt the origin, i.e., without loss of generality, we assume that
vectorz € R™ and any real matriceX andY'.

e ||z||: the Euclidean norm/zTz of z;

Throughout this papet,indicates a specific time instant on
%,_oo) andr € [t,00) will be used as the time variable after

II. NONLINEAR OPTIMAL CONTROL PROBLEMS

E. Notations and Mathematical Terminologies

Assumption 1. D = By(r4) for somery > 0.

e 5(X): the maximum singular value oX; The results in this paper can be easily extended to a general

e o(X): the minimum singular value ok; domainD without Assumption 1. For a well-posed problem,

o X ®Y: the Kronecker product oK andY’; we assumef(x) + g(z)u(z) is locally Lipschitz onD and

« By(r): an openr-radius ball{z : ||z] < r}; there is a policyu = p(z) that stabilizes the system (1).

o By(r): a closedr-radius ball{z : ||z < r}. Definition 1. A policy p(z) is meant to be a control input
For any N-vectorsz; € R" (j = 1,2,---,N), the column functiony : D — R™ that is continuous on the domain of
stacking operatorol{zy, s, - ,x,} € Rmtnzt+n~y js interest and satisfieg(0) = 0.

1 DY i T T DRI T T
defined ascol{zy, z2, -~ ,an} = [ 21 23 vy J7. We For a stabilizing policyu, define the region of attraction as

also denote the set of nhonnegative integers and real numbers
by Z, and R,, respectively. For any two sef@; and Qs Ra(p) := {z €D:xz(z;14,0) > 0asT — oo},
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wherex - (z; i, 0) denotes the state trajectaryr) at timer > For admissibility on2 (or closed-loop stability), the trajec-
t generated by the system (1) with the initial condition= tory z,( - ;u,0) should be well-defined of2 in the sense
z € D and a policyu = u(z). Here, the third parameter ‘0’ in of Definition 2, so thatc.(z; i, 0) starting from anyz € Q
z-(z; 1, 0) indicates the zero-exploration and will be clear imemains in the well-defined domaiR. This is guaranteed if
Section IV. For simplicity, we writer, = z,(z;1,0) if zand Q C R4 (u) and D containsR(x) or an invariant estimate
w are well-understood in the context. Using these notatiwes, of R4(u) containing 2. However, R4 (1) depends on the
precisely define a feasible trajectory and a stabilizingcgol policy i, so we can hardly determine suhindependently
on a given region as follows: of u. To overcome this difficulty and thereby, guarantee the
trajectory well-defined, we introduce the concept of inaati
admissibility (see our recent work [10] for detailed dissios
about this issue).

Definition 2. For a given policyu = p(z), we say that the
state trajectoryz.( - ; u,0) is feasible on a subsét C D if

2€Q = w(%p,0)€D, V1>t (2)  Definition 5. A policyu = u(z) is invariantly admissible with
Definition 3. A policyu = u(z) is said to stabilize the system®SPECt t0(3) on a subsef} C D, denoted by € Az (), if
(1) on a subsef) C D if and only if # is admissible orf} and
1) z-(z;u,0) exists for allz € Q and all 7 > 0; 2€Q = x.(2;1,0)€Q, Vr >t (6)
2) x-(-;u,0) is feasible orf; ) ) ) o _ o
3) the equilibrium ‘0’ of the system = f + gy is stable; The invariance (6) in Definition 5 obviously implies the
4) for all z € Q, lim, o0 2, (23 41,0) = 0. feasibility condition (2). Moreover, if2 is compact, then the

existence ofx,(z;u,0) Vz € Q andVr > ¢t is guaranteed
The CT nonlinear optimal control problem considered iy (6) and [34, Theorem 3.3]. For this reason, we assume
this paper consists of the input-affine dynamics (1) and tiigroughout the paper that the invariant admissible en

following performance index (3): Definition 5 is compact.
oo Define the Hamiltoniar (z, u, p) as
Tenul) = [ r(eru)dn ® ;
t H(z,u,p) :==r(z,u) +p° (f(z) + g(z)u). ()

wherer(z,u) € R is the cost function defined agz, u) :=
S(z)+uT Ru > 0 for a positive definite functios : D — R,
and a positive definite matri® € R™>™. For this perfor-
mance index, the value functidi“(z) for a policy v = u(x) H(z,u(z), VVH(x)) =0, VYo e Q, (8)

and a given (initial) valuer; = z € D is defined, if exists, as S ) o
which is actually the infinitesimal version of (3) and imglie
VH(z) == J(2,u(-))|u=p(z)-

. _ » Vi(a,) = (VVH ()T (f(z7) + gl@r)u(zr))
For the existence ot/*, the policy i needs to stabilize the = —r(zr, ulz,)) < 0. (9)
system (1). However, this is not sufficient for the existence
so we introduce the concept of the admissible policy. That is,V*(x) is a Lyapunov function for the system (1) [34].
Now, we define thd/#-induced compact s&b/, as

Assumingu € A(Q) andV* is C1(Q), then it satisfies the
following Lyapunov equation for the nonlinear system (1):

Definition 4. A policy u = u(z) is admissible with respect to
(3) on a subsef2 C D, denoted by € A(Q), if Q4 ={reD:V¥x) <d}
1) u = p(z) stabilizes the systeifi) on €,

2) Vi(z) < oo, for all = € Q. for some constantl > 0, and state two technical lemmas

which will be used in the analysis of proposed I-RL methods.
Note thaty € A(Q2) implies 2 C R4(u) and the existence The proof of Lemma 1 is in Appendix A.

of V#(z) ¥z € Q. In this caseV* is positive definite on the
subset) C D sincer(z, u(z)) in (3) is positive definite orD.
Moreover, this property can be easily extended to the Iarger
domainD by assigning a fictitious value t&'*(z) for each Lemma 2. SupposeV*(z) is finite on a compact subset
z € D\ Q such thatV* is positive definite oriD. Therefore, ) of D. Let d > 0 be a constant chosen in the interval
Assumption 1 and [34, Lemma 4.3] imply the existencexpf (0, mingcso V#(x)). Then,; is in the interior ofQ.

&, € K satisfying

Lemma 1. For 1 € A(Q), if V* € C}(Q), the value function
is the unique solution t¢8) over C*().

Proof: Assume(?’; is not in the interior of2. Then, there

au(llzl) < V() < a,(l|z]) (4) is a pointy € Q on the boundary)2. At this point,d <
- . . . - mingepo VH(z) < VF(y), but for allz € Qf), V¥#(z) < d, a
for all x € D. Similarly, sinceS(z) is positive definite orD,  ontradiction d < . So, 2" is in the interior of(. -

there existo,, as € K such that

as(llz]) < S@) < as(|]) (5) The objective of the I-RL algorithms presented in this
paper is to find the best admissible poligy minimizing

holds for allx € D. These clas€C functions in (4) and (5) the performance index (3) and the corresponding optimal
will be used in the analysis of the proposed I-RL algorithmsalue functionl’* () := V*" (). Minimizing the Hamiltonian
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H(z,pn, VV*) among all admissible policies, we can obtain [Initialize]
the optimal policyu*(z) as follows: Seti = 0 and (p0, €0) such that
1 1o € A(Qo) and Qo C D is compact.
pt(x) = —iR_lgT(x)VV*(x). (10) Sete > 0 be a small constant.
Furthermore, substituting (10) into (8) and rearranging th - i _
equation yield the well-known HJB equation: [Policy Evaluation]
1 Find V*i € C'(£;) such that
0=2S(z)+VV*'f(z) - ZVV*TQ(ZC)R_IQT(CC)V‘/*, H(z,pi(z), VV# (z)) = 0, V*(0) = 0.
V*(0) = 0. (11) ]
[Policy Improvement]
The existence of/* € C! satisfying (11) is the necessary and Update the next policyii 41 € C°() by
sufficient condition for optimality. pis1(z) = —2 R gT(z) - VV*i ()
I11. Pl AND I-RL WITHOUT EXPLORATIONS — ! .
The objective of PI [7]-[10] and I-RL (I-PI [12]) methods _ [(;”‘;1 Admissible Reg'on_olfﬂpdat? .
is to find the solutionV* to the HJB equation (11) and the Ind the next compact regionti1 <
corresponding optimal policy (10) by iterations. All théRl- such thafu, pi+1 € Az(Qiv1).

methods proposed in this paper have the same purpese,
finding the optimal solutior/* and p*. In this preliminary it
section, we present and briefly discuss the existing Pl and t+=——,5 yes
RL methods [9], [10], [12] without considering exploratin

Fig. 1 shows the whole process of a Pl method, called IA-
Pl in our recent work [10]. Normally, PI methods consist ofid- 1. Description of the IA-PI algorithm [10].
policy evaluation for solving the nonlinear Lyapunov edomat
(8) and policy improvement for updating the policy by theerul

V*#i and a given admissible regian, which is a subset of both
fis1(z) = _ER—l gT(x) VVH () (12) Ra(ui) andD. However, e_stimating%A(ui) or its subsetl;
2 may cause high computational burden, and needs the complete
(see [1], [9]). In addition to this, the IA-PI in Fig. 1 update knowledge about the dynamigg, g). On the other handy;
the next regiorf);,; in the inv. admissible region update stegan be chosen ag; = ;. In this case{2;;, becomes rather
for the invariant admissibility of:; and iz; 11 on ©;,,. This conservative, but can be determined without such obstasles
step can be omitted if one can find a universal admissible séown in the following corollary:
2 on which; € A() Vi € Zy. and letQ); be equal toQ o410y 1 Supposey e A(;) and Assumption 2 holds.
Vi € Z+. In this case, |IA-PI becomes the PI given in [8], [9] L -
If W, is given by¥; = Q;, then
For eachu; € A(£;), let ¥; be a compact subset such that o . . , 1
1) Q; C Wi © Ra () N D: 1) Q;41 is in the interior ofQ;, and V*i € C*(Q;41);
P= i ALt ' 2) u; and u;; are invariantly admissible o, ;.
2) . (-, i, 0) is feasible onw;. ) ps and pits Y afmis +
An example of suchb; is ©; in IA-PI (see Fig. 1), but we _ Note thatsincguy, € Az(ir1) impliesuiy, € A(Qiy1),
consider the general case whebe satisfies the above two Theorem 1 and Corollary 1 hold for ail € Z, by |nduct|o?,
conditions. By [10, Lemma 2], sucl¥; for u; € A(;) F‘”derNO € A(S0o). In the case ‘1’? = for all Vi € Z,,
guaranteeg; € A(T;), and thereby/# (z) < oo ¥z € ¥;. It has been shown in [10] that*: uniformly converges to
) R V* under certain conditions; this also implies the convergenc
Assumption 2. For eachy; € A(€;), V' 'S“C on¥;, and . _, ;* The convergence in the general case can be also
the next region(2;;, is given byQ;,, = €’ for somed; proven in a similar manner under Assumption 2.

chosen in the interval0, minzcow, V(). Next, integrate (9) front to t + T to describe I-PI. Then,
Theorem 1. Under y; € A(2;) and Assumption 2, we obtain the following I-TD equation for a givane A(Q):
1) Q;11 is in the interior of ¥;, and V# € C*(Q41); t+T
2) p; and ;4 are invariantly admissible of2; ;. V() = /t r(@r, plar)) d7 + VH¥(zer). (13)

Proof: u; € A(€;) and [10, Lemma 2] imply that’#:  This I-TD equation is well-defined for alt; € Q and for any
is finite on ¥;, and we havel’#i € C*(¥;) by Assumption 7 > 0if y is invariantly admissible of sincex; € Q andu €
2. So, Lemma 2 with) = ; implies Q;41 is in the interior Az (Q) guarantees. (z:, 1, 0) remains in the admissible s@t
of ¥;, which again impliesV*i € C'(Q;;1) since ;. is forall 7 € [t,t+T]. In the same way, IA-PI can be modified by
compact. Moreover, by [10, Theorem 2] with, = Q;,,, we integratingV*:(z,) = —r(z,, ui(x,)) over the time interval
have u;, pit1 € Az(Qiy1)- B [t,t+T1]. This madification results in I-PI shown in Algorithm
Theorem 1 provides a concrete way to construct the nelxtwhere only the policy evaluation step is descrilted;other
invariantly admissible regiof2;,; at eachi-th step, based on procedures are exactly same to I1A-PI shown in Fig\When
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Algorithm 1. Policy Evaluation of I-Pl without Explorations explorized system (15), the stability counterpart of Deitmi

[Policy Evaluation] 3, is precisely defined in this paper as follows.

Given p; € A(;), find V#i € C1(£;) by solving Definition 7. For a given policyu and an exploratiore, we
say that the nonlinear syste(@5) is input-to-state stable on

t+T
VHi(xy) = / r(2e, pi(zy)) dr +VFi(zgr) (14) Q if x, =, (z; u, e) existsvz € Q andVr > ¢, . is feasible
¢ on 2, and there existy(-) € K and (-, ) € KL such that for

on the domain);, wherex, = x,(x¢; i, 0). anyz € Q and all 7 > ¢,

ool < 81l = 1)+ s o)) @)

a universal admissible sét is givena priori and 2; = Q o ) )

Vi € Z., then Algorithm 1 becomes the I-PI given in [12].  NOw, it is stated in the following theorem that ISS and
If both 1A-P1 and I-PI use the same initial poligy, which invariant admissibility ofe are preserved under the small

is admissible on the same regiéhy, and generate the sameexploration if the policy is generated by either IA-PI or IIl-P

{Qi+1}iez,, then they produce the same sequenf®%} Theorem 2. Consider{;;} and {V*} generated by IA-PI or

and {u;}. Therefore, I-PI inherits the properties of IA-Pl_p| ynder Assumptions 1 and 2. If the exploratiesatisfies
regarding convergence and invariant admissibility diseds

above (see also [10], [12]). sup [le()] < as oy, (d;)

Remark 1. The I-TD (14) in Algorithm 1 does not contain t<T<oo o(R) ’
any explicit terms aboutf, g), and the input coupling term then (u;,1,e) € Az(Q;41) and the nonlinear syster(i5)
g(w) is only used in policy improveme(t2). This makes the underu = p;4, (z) is input-to-state stable oft; ;. Moreover,
algorithm partially model-free, i.e., the system drift dymics if D = O, = R™ and ., as € Koo, then ISS holds globally
f(z) is not required to be known in I-PI. for any z € R™ and any bounded exploratiof..

(18)

Proof: See Appendix B. [ ]
IV. RL COMPONENTS

To develop the main I-RL methods, we extend the concept Advanced I-TD and Design Principles of Exploration
of exploration in RL for a finite MDP to nonlinear dynamical : . .
If =, is generated by (15) with non-zero exploration, then I-

systems, and then with detailed mathematical analysisepte TDs (13) and (14) in policy evaluation of I-PI do not function

advanced I-TD, the refined version of the I-TD (13) with S ; o
. properly. Meanwhile, ifg(x) is not knowna priori, the
respect to exploration.

next policy p;11 cannot be updated by policy improvement,
either. To solve these two problems, the followiidependent

A. Exploration in Nonlinear Dynamical Systems advanced I-TD is devised from I-TD (13):
Now, we consider the nonlinear system explored by a known t+T -
time-varying probing signat.: V() = /t r(z, p(z)) +2v° (z)Re(7) | dT + V(z417),

. (19)

7 = fzr) + g(zo)[u(er) +e], a(t) =2€Q, (15) where(u, e) € Az(f) is a given policy-exploration pair that is
wheree : [t, 00) — R™ is called an exploration, and assumedvariantly admissible on a sét € D; = denotes the trajectory
piecewise continuous and uniformly boundedy z; 11, e) de- x;(?ﬁ% u,_e) for z = € Q; V(z) € R is positive definite and
notes the state trajectory(r) at time > ¢ generated by the ¢ On{% v(x) € R™ is a policy to be determined. All the I-RL
nonlinear system (15) under the given poliey= xi(z) and methods proposed in this paper will be designed based on this
exploratione,. Unlike in a finite MDP [3] or linear dynamical advan(::Fed I-TD (19). Compared to I-TD (13), the exploration
systems [1], [13], [16], [18], we need the following concepf€M ¥ (z)Re(r) is added to cancel out the+eﬁect§ ofon
of invariant admissibility of an exploratioa I-TD, and to acquire the new policy(z) = x(z) without

knowing g(z) a priori. Here,u™ () is the desired next policy

Definition 6. For a given policy. € Az(Q2), an exploration defined in terms ofy(z) and VV (z) as
e is said to be invariantly admissible af?, denoted by €

Az(Q; ) or (u,e) € Az(€2), with slight abuse of notation, if pt(z) = —%R’lgT(I)VV(a:).

2€Q = xz:(z;p,e) €Q, V7T >t (16) For the discussions, we assume without loss of generality th

. : . . . . e is T-periodic,i.e,, e; = e for all = > t.
Notice that the invariance (16) in Definition 6 is an exten- P T -

sion of (6) with respect to an exploratienif 2 is compactand Theorem 3. Finding V' < Cl(Q) and a policyv satisfying
(u,e) € Az(9), then the existence of . (z; i, e) ¥z € Q and (19) for all z = z; € Q is equivalent to solving

Y7 >t is guaranteed by (16) and [34, Theorem 3.3], and (16) aT

also impliesz, (-, u, €) is feasible onQ). Here, the feasibility H(z, plx), VV () = 2¢" (x) Re, (20)
of z,(-,u,e) can be also defined in a similar manner téor all z € Q andr € [t,t+T), wherep(z) := u*(z) —v(z)
Definition 6 by extending Definition 2. Moreover, ISS for thes the policy error.
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Proof: See Appendix C. m Theorem 4. Suppose:, is given by(23) and V* € C(Q).
Using Theorem 3, one can easily verify thatif € C'(Q), Then, the solution to the advanced I-T[@9) is uniquely
determined by21) under Assumption 3a.
Via) = Vi@, o) =it @lvove (D) A2 P

Proof: By Theorem 3 and the above discussion, solving

are a solution to the advanced I-TD equation (19) and satis(fyg) for all z € Q is equivalent to finding” and v satisfying
H(x, p(x), VV () =0, ¢(z) =0, Ve (24) forallz € Q and allj € {1,2,---,L}. From (24), we
_ _ have2(c; — ¢j41)T Rp(x) =0 (j = 1,2,--- , L —1). That is,

However, the solution may not be unique. For example, if
m =1 ande, is constantj.e., e, = ¢ V7 € [t,t + T), then 2(Crip-1 — Ca.p)Rep(z) = 0. (25)

Theorem 3 implies/ can be obtained fron (z) andc as From (25) and Assumption 3a;(x) = 0 is obtained since

v(z) = pt(z) + H(z, u(z), VV (z))/Re. Assumption 3a is equivalent to
This means that for a givel (z), there are infinitely many k1l < (Crip—1 = Co)(Crir—1 — Cair)" < ko,
solutions depending on the constantinless which implies rank (C1.;_1 — Cs..) = m. Moreover, the
H(z, u(z),VV(z)) = 0. substitution ofp = 0 into (24) yieldsH (z, u(z), VV (x)) = 0.
_ ) Therefore, the application of Lemma 1 proviés= V#, and
For the case wheg(z) is known,v = ;™ can be substituted \ye obtainy — v —yu from ¢ = 0. u
to (19) to obtain the following simplified advanced I-TD: Under the substitutio’ = V#, (19) can be rewritten as

t+T t
V(ae)=V(zisr) :/t [r(z, p(2)) VTV (2)-g(x)e,] dr. VH(ay) = / o [r(gc,u(x)) + 20 (z)Re, | dr + VF(2417),

(22) ' (26)
In this case, the solutiol” = V* to (22) is unique as statedgng (24) is more relaxed to
below.
T(2)Re; =0, Ve eQ, Vje{1,2,---,L}, 27
Corollary 2. Assume that/# is C* on Q. If V € C1(Q) is @ (o) fey / { ) _ @
the solution to the advanced I-T(22), thenV = V~. due to H(z, u(x), V#(x)) = 0. In this case, the uniqueness
. . of (21) is guaranteed under the following simple excitation
Proof: I-TD (22) is the advanced I-TD (19) wit(z) = 5 dition:

0. So, Theorem 3 implies that € C*(9) satisfying (22) for _ _
all € Q is the solution of the Hamiltonian equation Assumption 3b. There exist<3, 3 > 0 such that
L
H(CC,/,L(CC),VV(I)) - O’ VI € Q [{3] S ZCJ'C? S 1434[.
Then, the application of Lemma 1 concludés= V#. ] j=1

f . K iori th bsi Theorem 5. Suppose/ = V* € C1(Q) ande, is given by
L 9(;”) |shnotd nowng Ip_rl_'%r"ltg er: Wﬁ_ cannot slu stltute(23)_ Then, the solution to the advanced I-TDB) is uniquely

v = " 1o the advanced I-TD (19). In this general case, thg,ormineqd by21) under Assumption 3b.

unigueness of (21) depends on the excitation conditione®o s

this, lett; € [t,¢t+T] (j =0,1,---, L) be the time instants Proof: Note that (27) impliesCy., Rp(z) = 0 Vz € Q,

satisfying which yieldsy(z) = 0 sincerank (Cy.1,) = m by Assumption
3b. Therefore, by = V# andy = 0, we haver = ut|y—yu.
to=t<t; <ty < - <tp=t+T, v v BT ey

and assume that. is piecewise constant and determined byremark 2. Assumption 3b is equivalent to the following
er =cj, VT € [tj,tj1), (23) excitation condition for some constants, w4 > 0:

J=1

T
where{c;}L_; is a sequence of constant vectorsHf'. We 73l < / erel dr < myl. (28)
also define then x (I — k) matrix Cy.; for 1 <k <l < L as t

Similarly, ift;41 —t; =T/L for all j € {0,1,2,---,L—1},
then Assumption 3a is equivalent to the existeneg pf, > 0
Then, under the substitution of (23), (20) can be written assuch that

H(z, p(x), VV (2)) = 2¢" (z) Rej,
forallz € Qandallje{1,2,---,L}.

Crt:=[crk o1 -+ a.

(24) AT
mlg/t (67—€T+%)(€T—6T+%)Td7’ST{'QI. (29)

Assumption 3a. There exist<;, k2 > 0 such that Note that for Assumption 3a, there should exists a sub-
1 sequence{c;, }}%,' whose difference{c;, — c;,.,}7, is
rid < Z(Cﬂ' —¢j1)(¢; — ¢j41)T < kol linearly independent. For thid, > m + 1 is required. On the
= other hand, the existence of linearly independent subsegue

{¢;. }i, suffices fore, to satisfy Assumption 3b. In this
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Algorithm 2. Explorized I-PI

[Initialize]
get? - %e )absmall ﬁo?]sgm arng:_ 0. Policy Evaluation: Given (v;,¢) € Az(£;) andz € ©;, find
et (vo, e, Q) be such thatly C D is , Q).
compact andvo, €) € Az(Qo). Vitr € C7(() such that
l Vig1(@e) = Vigr (ze47)
t+T
[Policy Evaluation] = / [r(z,vi(z)) — VIV () -g(x)e-|dr (30)
t

Find Vi41 € C*(%) such that for alke € Q;,
H(z,vi(z), VVita(z)) = 0, Viga(0) = 0.
] Policy Improvement: Update the next policy;; by

wherez = z-(z; v, €).

[Policy Improvement] Vig1(z) = _lRfl gT(I) - VVi().
Find the next policyv;+1 € C°(Q;) satisfying 2
Vit1 = 7;R71 gT - VVig1, Vo € Q.

l Note that all the proposed methods are equal to I-Pl and
[Inv. Admissible Region and Exploration Update] IA-PI in the iteration domain, as long as the generated
Find the next compact regiof; ., C D and value functions and policies have no errors. That is, if
an exploratione, such that Vigr = V¥ and vy = v, Vi € Zy and vy = po,
vi € Az(Qis1) and (viy1,e) € Az(Qiy1). then, we have/; , = V* and vty = pit1, Vi € Zy,

whereV*#i and u,41 are generated by IA-PI or I-PI.
2) While IA-PI and I-PI cannot explore the state-space
1i+1 in online fashion, the proposed methods use invariantly
no yes admissible explorations to simultaneously excite thesstat
variables. So, to maintain invariant admissibility of the
exploration, the proposed methods (re-)genetatboth
at the initialization step and after each policy improve-
ment, as shown in Fig. 2.
case, we need. > m. Therefore, whenV is given by Note that the three I-RL methods are designed based on the
V' a priori, the construction of the exploratian becomes respective advanced I-TDs (19), (22), and (26), which makes
relatively simple and easy. For instancepnif = 1, then two differences in policy evaluation and improvement stepse Th
constants:; # ¢, (e.g, c; = 1 andc, = 0) are necessary to other parts are exactly same to those presented in Fig. 2, so
construck, without violating Assumption 3a. On the contraryare omitted in the descriptions of the proposed I-RL methods
for the case oV = V# andm = 1, e, satisfying Assumption (Algorithms 2-4).
3b can be designed using only one constart 0. Remember
that ‘Assumption 3a’ or ‘Assumption 3b with" = V#*is A Explorized I-PI
required to guarantee the uniqueness of the solution (21), a
stated in Theorems 4 and 5.

Fig. 2. General description of the proposed online |-RL rodth

The first one is named as explorized I-Pl whose policy
evaluation and improvement are described in Algorithm 2. As
can be seen from Algorithm 2, explorized I-Pl comes from

V. MAIN I-RL ALGORITHMS WITH EXPLORATIONS the advanced I-TD (22) and is able to simultaneously excite
Motivated by the advanced I-TDs (19), (22), and (26), wiie states during policy evaluation by using the exploratio
propose three partially/completely model-free I-RL altjons e,. Unlike Algorithm 1, the advanced I-TD (30) contains
that exploit the exploratior, to simultaneously excite the the explorized termV*V;,;(z) - g(z)e,’ to cancel out the
states and learn the next policy without knowing the nomiineéeffects of the exploratior. Whene = 0, explorized I-PI
dynamics(f, g). While IA-PI is an off-line method, all the (Algorithm 2) becomes the I-PI described in Algorithm 1 and
proposed I-RL algorithms can run in online fashion even whéf Section I, provided that (30) holds for all = z; € ;.

the nonlinear systenif,g) is partially/completely unknown In explorized I-Pl,e, does not need to satisfy the excitation

and undergoes exploration,. Fig. 2 describes the whole conditions such as those in Assumptions 3a and 3b as neither

process of the proposed methods in a unified manner, whidges the advanced I-TD (22). By Corollary 2, explorized I-

are similar to but different from 1A-PI and I-PI described irP! guarantees uniqueness of the solutign= V"¢ for any

Fig. 1 and Algorithm 1, as described below. given exploratiore.-, and one just need to efficiently explore

1) At eachi-th policy evaluation and improvement steps of'€ State-space using- without considering any excitation
the proposed methods, the I-RL agent utilizes advancg@nditionson e,
I-TDs to find V;; andv;; satisfyingV;;1 =~ V¥ and
Vi1 ~ v on €y, wherevf | is given by B. Integral Q-Learning I, Il: Model-free I-RLs
N 1 7 . The other two I-RL algorithms proposed in this paper are
Vigr = —§R g (x)VV" (). named integral)-learning | and Il, which are derived from
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Algorithm 3. Integral Q-learning | zoh
! poligy: u =

Policy Evaluation & Improvement: Given (v;,e) € Az(Q;) - SWitch to the next policy u = 111 zero|exploration e = 0
andz € Q, find Vi1 € C1(Q;) andvq € CO() such that Apply non-sero exploration e. |

Vita(xt) = Viga (@e47)
4T
:/t {r(m,yi(:c)) +2vl,, (z)Re, | dT (31)

wherex = x,(z; v;, €).

Algorithm 4. Integral Q-learning Il

Policy Evaluation: Given v; € Az(Q;) and z € €, find
Viy1 € CH(S) such that

t+T
a3 . . 1 C O, in R2,
Vi+1($t) _ / r(:cT, V’i(IT)) dr + Vz‘+1(5€t+T) Fig. 3. Switching and exploration scheme whep,; C Q; in R
t

wherez, = z7(z; 14, 0). C. Exploration, ISS, and Invariant Admissibility
Regarding the explorations applied to the proposed methods
we have focused on the excitation conditions to uniquely
obtainV;;; = V¥ andv;;1 =~ V;fu at each iteration. The
required excitation condition for each proposed methodazan
summarized as follows: 1Bxplorized PI: None, 2)Integral
-learning I: Assumption 3a, and 3)ntegral @Q-learning
7 Assumption 3b. In this subsection, we suppose thattat
iteration, V;,; andv;4; has no errorj.e, V;x; = V¥ and
Vi1 = u;fH on ;, and consider the next policy;,+; and
next invariantly admissible regiof?; ;. Let ;1 and a; 1
Algorithm 3 describes policy evaluation and improvemetite of classkC satisfying
of the proposed integr#)-learning I; as mentioned before, the _
other steps of the algorithms are exactly same to those in Fig air1([l2ll) < Visr(2) < Giga (fl])-

2. In this method, the I-RL agent finds the solutibh.1 € |n this ideal case, the proposed I-RL methods are equal to IA-
CH(Q:) andv;y1 € C°(€) of the advanced I-TD (31) at thep| and I-PI in the iteration domain, so under Assumption 2
same time. On the contrary, integi@Hearning Il illustrated with 1, replaced by;, the policies/; andv; ., are invariantly

in Algorithm 4 performs policy evaluation and improvemengdmissible orf2; ; by Theorem 1 an€;,, = QY. Moreover,
separately. In this second method, policy evaluation uses trheorem 2 implies thatv;, 1, e) is invariantly admissible on
zero exploratiore = 0, and is the same as that of Algorithm 2, ,  and that the system = f+9(viy1+e) is input-to-state
undere = 0; policy improvement of Algorithm 4 is developedstable on(2,.; if the exploratione is bounded by

from the advanced I-TD (26) to simultaneously explore the
state space, and at the same time, to find the next policy sup |le(7)| < \/ch oa ! (di)/(R). (32)
satisfying (31) without using the knowledge ©f, g). tsr<oo

dLD =R"™ andg;+1, as € K, then this ISS holds globally
éor any bounded exploration, by Theorem 2. In case of
hate is constructed from some constant vect@&;}f’:l and
satisfies (23), the boundedness condition (32) is replaged b

Policy Improvement: Given (v;,e) € Az(Q;), z € ©;, and
Viy1 € CH(;), find the next policyv; 1 € C°(Q;) such that
(31) holds, wherex = x,(z; v, €).

the advanced I-TDs (19) and (26), respectively, and can
implemented without knowing the system dynamigsg).
In both algorithms, the exploratiof. plays a central role in
relaxing the requirement of the knowledge «df:).

For simplicity, we assume in this paper that the explorati
e applied to Algorithms 3 and 4 is given by (23) for som
constant vectorgc;}i_,. In this case, for the uniqueness o
the solutionV;,; = V¥ andv,; = v, the vectors{cj}f:1
should be carefully chosen so that they satisfy Assumption, = 1 (7 /= :
3a for the first method and Assumption 3b for the second”cj|| < \/gs © iy (i) /a(R), Vi€ {12, N} (33)
method. In general cases, (28) and (29) can be alternativeslow, the remaining question is what to do when the state
to Assumptions 3b and 3a, respectively. Although integra outside the invariantly admissible regif¥, ; during online
Q-learning 1l cannot simultaneously explore the state spalrning at(i + 1)-th step. Note that using Corollary 0,1
in policy evaluation, the exploration in policy improventencan be determined &3;,; = ;' underV;;; = V" andv; €
can be designed in a simpler manner than the exploratighiQ2;) by choosingd; in the interval(0, min,cgq, Vit1(x)).
in integral Q-learning |. This is because the constructibn n this case, we hav@;,, C Q;; by Theorem 2(v;1,¢) €
{c; e, satisfying Assumption 3b is relatively easier andiz(£2;1) for e satisfying (32). However, it is not guaranteed
simpler than that of{c; f:l satisfying Assumption 3a, asthat (v;41,¢) is invariantly admissiblen €2;, soe cannot be
mentioned in Section IV. safely applied to the systein= f-+g¢g(v;+1+¢) when the state
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zr lies in Q; \ Q;4+1. In this particular case, the best way td andv;;1(0) = 0, we havep,.(0) = 0 and¢,(0) = 0 without
preserve invariant admissibility and ISS is to apply theeatr loss of generality.

policy v = v; and zero exploratiom = 0 until some finite Now, consider integraty-learning | (Algorithm 3) as an
time ¢ > t at whichz, enters intoQ;,1, i.e, zv € Q;41.1  implementation example. In this case, substituting (3% in
Then, as illustrated in Fig. 3, the next poliey= v;+; and the advanced I-TD (31), we obtain

non-zero exploratior satisfying (32) or (33) can be applied -

thereafter without violating invariant admissibility at®S on ~ 0i(1, €) =[@.(zi11) — P.(21)]” Wi

Q;11. On the other hand, if one can firfd;; that contains t+T -

Q; and satisfies; € Az(Q;.1), then the next policy;,; and +/ {7“(957 vi(z)) + 26, (iC)ViRer} dr, (36)
non-zero exploration satisfying (32) can be applied any time K

sincex. is already inf;;. whered;(z,e) € R is the advanced I-TD error given by

Note that in the global cas®(= R™ anda; 11,05 € Koo), 4T
the proposed I-RL algorithms can be performed without thes, (4, ¢) = £%(z,) — £5(zy 1) — 2/ (e%(z))" Re, dr.
initialization and regeneration d®; ande. In the local case, t
such processes regardifig ande can be also removed whenp g vi € RYem asv, = col{vi, Vs, ,vim}. Then,
the exploratione is sufficiently small ande, starts from a Vi T VWV Re — (R T, to (36 d th
region{ near the origin that is small enough to be contalne%éngry;agiﬁa (txh)e . Saaogl jv(f (?l()lt(aa%) th‘; f(())ll(()Wil)’l anex ;ani
by any Q,,, satisfyingv;11 € Az(Qi11). regardir?g ?31): q ' g exp

D. NN-Based LS Implementations Si(zyse) =l (zyse) - 05 + Z(x 1), (37)

The proposed I-RL methods (Algorithms 3-5) can be im-
plemented in the LS sense by using NNs to approxmh’am
andv;y1. Let {¢ € CY(D)}32, and {¢} € C°(D)}52, be
the sequences of real-valued NN activation functlons that a
linearly independent and complete on their respectivetionc
spaceC! (D) and C°(D). Here, the superscripts ‘@’ and ‘c
denote actor and critic, respectively. Using these adtimat
functions,V; 1 € C! andv;,, € C° can be represented as

where 8§, = col{w;,v;} is the vector of unknown weights;
(x¢; e) andZ (z4; v;) are given in Table I. The other advanced
I-TDs in Algorithms 2 and 4 can be also formulated as (37)
with 0;, ¥ (z;e), and Z(x;v;) given in Table | for each
,advanced I-TD. In Table I, the advanced I-TD errér&e;; e)
for Algorithms 2 and 4 were omitted, but can be easily
obtained by the similar procedure. For policy evaluation of
Algorithm 4, see [12]; in policy improvement of Algorithm 2,

{%H((:c)) - %Zil wijjf((x)) (34) the next neuro-policy?lqu1 can be updated by
13 ) = 1 Vii O\ T R _
. =t | Pip(@) = —5R 7" @)V (2)w; (38)
wherew;; € R andv;; € R™; we consider§.,V,)-truncation
of (34) as NN expressions df;;; andv;: using Vi1, instead ofV;_, as was done in [12].
Vi _ N - 0(x) = wT Let Ny be the number of elements &f, e.g, Ny = N.+N,
{A +1(2) - szv:al w,ﬁi (w)_ W% b.() for (31). Then, we haveV, unknowns in the 1-dimensional
Vip1(z) = ijlvij‘bj (x) = Vi¢,(z), equation (37). In the implementationg; will be uniquely
Wi = [wit, wiz, -, wen, |7 € RN determined in LS sense. Defingk], 6;[k], and Z[k] as
where V,; = [V117Vz27"' VZ'NQ]T ERNQX: N ’(/)[k] = Q/;(xt_’_kT’e)’
¢ (I) [ ( )7¢ ( ) 7¢(]:VC(I)] € R™e 5z[k] = 5i(It+kTae)a
ba(7) = [¢1(x), $5(x), -, fy, (2) ] € RN, Z[k] = Z(xoskr, v3)-
Using these expressions, (34) can be rewritten as Then, referringr, | ,_1)7 as a starting point of the advanced
" . I-TDs, the following generalized I-TD error equation can be
Vis1(z) = w; ¢.(z) +€f(2) (35) derived from (37):
vig1(z) =V ¢, (x) + € (),

. Gilk] = " [K] - 0; + Z[K], (39)
wheree$(z) ande¢(z) are NN reconstruction errors. Note that
Assumption 1 implie® is compact. So, there exidf., N, € which holds for anyk € N sincex, remains in the admissible
N such that the NN errors{ ande? in (35), andVeg, are all region{; for all 7 > ¢ by (v;,e) € Az(€;). Suppose the data
bounded on the compact sBtif V;;; € Ct andv; 1, € C°  ([k], Z[K]) for k =1,2,--- | N are all available, and define
are finite onD. This boundedness property also holds if ththe LS errorE to be minimized ags? := %fo:l 62[k]. Then,
domain is restricted to a compact subsefbsuch as2;i in differentiating £2 in terms of@; with the substitution of (39)
the proposed I-RL algorithms. Also note that sirfi¢e; (0 ) = vyields

ISincev; € Az(£;) implies asymptotic Lyapunov’s stability, there exists OE? i 35 XN: [ ] [ ]
finite time ¢/ € [t, 00) such thatr, = z,(z; 4, 0) for z € Q; enters to the = -0; + .
00;

smaller seml’l C Q; att’ under the zero exploratioa, = 0. i b—1 =1
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W Vi

Policy Evaluation & Improvement

Vier () = W/ ¢ (x)
Critic NN (Value Function)

N -1, N
0, =— (Z zp[k]sz[k}) <Z ¢[k]Z[k]) exploration e(t)
k=1 k=1

Find 6; = col{w;, v;} satisfying

Exploration Generator

LS Solver V;
A T + .
b =V o0 |———(X) £ =/00) + g)[u + ]
U=v,, ute X
Actor NN (Controller) Nonlinear System

Fig. 4. The whole control scheme scheme with integpalearning | (Algorithm 3) and its LS implementation.

TABLE |
FUNCTIONS AND VECTORS OF EACH ADVANCEDI-TD ERROR EQUATION(37) FORNN IMPLEMENTATIONS OFALGORITHMS 2—4

Algorithm Process
gIl\lo. Type 0: V(@i e) 2 vi)
Policy t+T t+T
3| e | w belarir) =dolo) = [ VT o.(0) glo)er dr [ @@
P?"CY 4T t+T
Evaluation
4 & collwivi} | col{guorir)—gean). [ 26,(0) (e ar) [ e
Improvement] ¢ ¢
Palicy =T . . t+T
5 Improvemeni Vi /t 2¢4(x) @ (Rer)dr Vi(zegr) — Vilze) +/t r(z,vi(x))dr

Equating this to zero and rearranging the equation, we bt#issumption 3a (or (29)) and ii) the boundedness condition
the LS solution of the form (32) for ISS and invariant admissibility. The whole control
N -1, N scheme with explorized I-PI or integrég}-learning Il can be
0,15 = —(Z¢[k]¢T[k]> (Zq,b[k]z[k]). (40) described in a similar manner by modifying LS solver and
k=1 k=1 actor NN blocks.
For the existence of the unique LS soluti@pn; s, we need
the following excitation condition: E. An LQR Example: The Global Case

Assumption 4. There existxs, g > 0 such that In'the CT LQR case, the domai? becomesR™, f(z) =
Az, g(z) = B, and S(x) = 27 Sz for some matricest, B,
andsS > 0 with compatible dimensions; the HIB equation (11)
becomes the well-known algebraic Riccati equation

N
ksl <Y [kl k] < kel
k=1

Note that the existence of the inverse in (40) is guarantged b ATP* 4+ P*A—-P*BR'BTP* + S =0,
Assumption 4. Similar to Assumptions 3a and 3%,> Ly
is necessary to satisfy Assumption 4, so at ldasthumber
of data should be collected to perform the LS (40) at e
iteration. V*(x) = 2" P*x, pt(x) = —K*r,

The whole control scheme with integr@-learning | and hereK* := R-1BTP*. By standard LQR theory, it is well

its LS implementation is demonstrated in Fig. 4. At eacﬁnown that for any stabilizing linear policy(z) — —Kax
iteration, the LS solver collects the data needed to caeul i(x) existsVa € R", and can be represented & () _
lk], 0;[k], and Z[k] for k = 1,2,---, N, and then finds T Ptz, where P* € Roxn s positive definite. From this

the weight vectorsv; andv; satisfying (40), both of which gbservation and the proposed nonlinear integydearning |

for a positive definite matrix* € R"*™. The optimal value
aEantion and policy are given by

are transferred to the corresponding actor and critic NNs lgorithm 3), we obtain the simplified integra)-leaming
update their weights. Here, the actor NN generates thealon for CT LQR; which is shown in Fig. 5 and is a modified

input; the output of the critic NNV, (z) is used in the . =" oo original integraf)-learning for CT LQR [13].
exploration generator module to calculate the bound (32) P this framework V-. . and the next policy;,, are exactly
the exploratione,. In exploration generator, the exploration arameterized as’ B G

e is constructed, and modified if necessary, that plays a kgy
role in exciting the signak)(x:;e) in (40), and satisfies i) Vie1(z) = 2T Pz, viga(z) = =Kz,
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[Initialize] In this case,S(x) is quadratic, and the nonlinear system
Sete > 0 be a small constant and= 0; (42) can be approximated near the origin by a linear system.
Setu = —Kox be any stabilizing policy. Therefore, by the standard LQR theory [26], [2V}/¢ can be
l approximated by a quadratic function near the origin (see al
_ _ [9, Remark 3.1.8]); we choose; and¢,(z) in the critic NN
[Policy Evaluation & Improvement] Vigr(z) = wl-T't,bc(:v) as

For the linear system
w; = (w1, w2, wi3]T7 ¢.(r) = [Ii L1, x%]T (43)
&= Az + Blu+ €]
To determine the appropriate actor NN structure, we suibstit

with v = — K2 and any bounded exploratian# 0, _ o T . .
find P;1; > 0 and K, such that for anyc; € R™, (43), R =1, andg(x) = [0, h(x1)]* to (38), which results in
. 1
{EtTPZ'+1{Et — {EtT_'_TPZ'JrﬂEtJrT (41) I/i+1($) = —511)1'2 . xlh(xl) — W;3 - IQh(ZEl). (44)
t+T
= /t 2" Sz + u" Ru + 22" K71 Re- | dr. Now, assume thak(z;) can be represented as

i h(z1) = 9" (1) + en(a1), (45)
i—i+1 with the weight vectord € RM, the nonlinear regression
no yes function+(x;) € RM, and the bounded approximation error
en(x1); M is the number of weights. Then, (44) becomes
Dip1(x) = (v p(x) + &),

wherev;", p(z) € R*M are defined as

Fig. 5. Simplified integrall-learning | for CT LQR.

with zero reconstruction errors;(z) = 0 and ef(z) = 0 N -

for all 2 € R™ Hence, if the parameterB,,; and K;y; Vi = —[wi2/2, wis]” ® ¥ andp(z) ==z @(x1), (46)
are uniquely determined by (40) that solves (41) _in Fig.. 3nd En(x) is given byzy (z) = —(winz1 /2 + wizws)en (1),
then we havet; s = 6;. In other words, Assumption 4 is \hich is obviously bounded in a compact set. From this result
sufficient to guarantee the uniqueness of the target salutig. -hooser. andé, () in the actor NNo;; = v7¢, (z) as
P,y = P¥ and K;;; = R™'BTP¥; the other excitation ’ “ ’ v e
condition one, such as Assumptions 3a or 3b are not required Vi = [vi1, via, -+, viear |© and @, (x) = p(z).

to obtain the unique solution. From this, we can see thatun . o :
Assumption 4, ISS holds globally by Theorem 2 for any initi c#?ote _that the actor NN A'S usgd in integr@Hlearning | and
condition z € R and any bounded exploration since we Al to find the next policys, 1 with vi ~ v, whenh(z1) (or
have a,, () — a(PW)HxHy? and a,(z) = o(S)|z||2, both 9¥) is not known. Ifh(x;) is perfectly known, then (38) can
of Wh_lgh are ob_viously of clasﬁi::. Thereﬂ)re, in tr;e LQR be “S?d tp directly compute the_next policy., as was done
case,; — R" Vi € Z., so the invariantly admissible pair'n policy improvement of explorized I-Pl. At eachth step,

(441, e) does not need to be updated at eath iteration— \évitand/orvli will ]Sezur;gdaidib){ t2he LS;OIUUO“ (ﬁO)tagéJl
any bounded non-zero exploratieguaranteeing Assumption tha;as§r§n}gt%$r:€[ t]r’1e [ol]o)'e(ct'_e o 7t.h'e. ’ ro) irsigol-lgf_ emétrr:o ds
4 for updating(P;+1, K;+1) is sufficient to run the algorithm . imuiations, JECtV prop

correctly, as shown in Fig. 5 and explained in this sectidre TS to find the optimal weight vectors™ and/orv* given by

other proposed I-RL algorithms (Algorithms 2 and 4) can bew* — [1/2,0, 1]T andv* = V;r Wi = _[0T7 ﬁT]T,
also simplified and analyzed in LQR frameworks in a similar
manner to integral)-learning |, and the analysis results in the
same conclusions. A. Simulation Example 1
For the comparison with I-PIl (Algorithm 1) in [12], we
VI. NUMERICAL SIMULATIONS first consider the nonlinear system (42) withr,) = sin(x;),

In this section, the proposed I-RL methods are simulated Wdich can be represented by (45) with= 1, /(1) = sinxy
verify the effectiveness of the proposed I-RL algorithms ar@ndex(z1) = 0. In this casey; and ¢, (z) are given by
the correctness of the relevant theories presented in #puisrp v; = [vi1, vi2 | and ¢, (x) = |21 sinz1, wosinz; |7
In the simulations, we consider the nonlinear system T “ ’

Tl = —T1 + Ta (42) TABLE Il
Ty = —(5171 + 172)/2 + CCQ}LQ(CCl)/2 + h(xl)u, (ExAMPLE 1) THE NUMBER OF COLLECTED DATA PER ITERATION

with a nonlinearC*-function h(z1), and the cost(z,u) with Process Type & Algorithm No. || N | No
S(x) = 23 + 23 and R = 1. By the converse HJB approach  Policy Evaluation of Algorithm 2 30| 3
; ; ; ; Policy Evaluation & Improvement of Algorithm 50 5

[35], the optimal solution is given by Policy Evaluation of Algorithm 4 30| 3
Policy Improvement of Algorithm 4 20 2

V*(z) = 22/2 + 22 and p*(z) = —aoh(21).
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Evolution of the critic weights w;

13

Trajectories of z1(z)

3 ‘ :
25 7\-“ Algorithm 2 -Q = w; - = wp -H - ws
i
ok Y Algorithm 3 Wit Wiz w3 5
3 S
% | Algorithm 4 @ Wi X Wy S0 wis 3
PRk R :Z
3 Rw, E
g o1t ¥ B ] = e o o N = _02 J
g 9
o5t R e S
X 04| ; 9
R "
or R I - i 0 5 10 15 20 25
K4 » Time (7 [s])
4
0.5 ;
4 (@) z1
-1 S 1‘ 2‘ ?" 4‘; 5 Trajectories of xs(t)
Iteration
(a) Critic NN weightsw;
Evolution of the actor weights v; E
of [ A A A & E
; 2 X 2
/ <
i
‘l Algorithm 3 ‘ - @ - Vi - B - vi2
-05 8
1
3 Algorithm 4 ‘ . oy 0 5 10 15 20 25
g / gorithm Vi1 -0— Vi Time (< [f)
i/ (b) 22
—1F / ___‘,,a—___- _.__._e____
/ ,@ ‘‘‘‘ e {> Algorithm 2+ =+ = Algorithm 3 Algorithm 4
; '
I ;‘,/
1,5 Fig. 7. (Example 1) Trajectories of the state variables (aj(7) and (b)
-1.58% . ; : . 1 x2(7) for Algorithms 2—-4. The marked points indicate the time ans the
0 1 2 3 4 5 critic and/or actor NN weights are updated.
Iteration
(b) Actor NN weightsv;
Fig. 6. (Example 1) Evolution of critic/actor weights for Algorithms 3-5. and 5) As shown in Fig. G(a)’ all ,the critic ngght& at each .
iteration are very close to those in [12, Section 6.1], sihowi

the equivalences of all the proposed I-RL methods and I-
Pl in the iteration domain under the uniqueness condition.
The actor NN weightss; in Fig. 6(b) are also close to each
and the sampling perio@ are set tar, = [0.5, —0.5]7 and other at each iteration. Moreover, as shown in Fig. 6, both
T = 0.1 [s], respectively; the number of dat®,, collected per weightsw, andv; converge to their optimal values within a
iteration is determined byN = 10 x Ny’ for each process, few iterations, which is due tthe second-order convergence
as demonstrated in Table Il. Note that all of these settingature of I-Pl and PI in the iteration domaifi3], [17], [21],
correspond to the simulation in [12, Section 6.1], whate= [36]. Fig. 7 shows the state trajectories, which are all lutmeh
30 was used undeNy = 3 as well. In the simulations of but oscillatory due to the exploration applied for both the
Algorithms 2 and 3, we used, given by excitation oft[k] and online learning in partially/completely
) {C for all = € [t, + NT/2), unknown dynamics(f, g). In I-PI [12, Section 6.1],g(x)

As in [12, Section 6.1], the initial admissible policy is giv

by 10(z) = —32 sin(z1)(z1 + 22); the initial statex, att =0

(47) should be known and there is no way to re-excite the signal
—c forall 7 € [t+ NT/2,t+ NT),

because of the absence of the exploration
with ¢ = 2.5. In policy improvement of Algorithm 4, we used
er =35 forall relft,t+ NT). (48) B. Simulation Example 2

Notice that these explorations (47) and (48) satisfy Assump In this example, integralp-learning | is applied to the
tions 3a and 3b, respectively, if one considers the extendaghlinear system (42) with(x1) = cos(2x1)+2. This system
time interval[t,t+ NT), instead ofit, t+T'). The update step was also used in [22], [24] to simulate their synchronous
of (Q;,e) is omitted in these simulations for simplicity (seeactor-critic learning methods. As was done in [22], the \l&ig
[10] for an example of updatin€; in IA-PI), so the same vectorw; of the critic NN is initialized tow, = [1, 1, 1]7;
will be applied for all iteration steps. the corresponding initial actor NN weight vector is given by
Fig. 6 demonstrates the simulation results in the iteration = vj = —[1/2, 1] ® 9. The states are initialized to zero,
domain—(a) the variations of7; generated by the proposed I-.e, 2y = [0, 0]7; we setN = 40 andT = 25 [ms], so the LS
RL methods (Algorithms 3-5), and (b) the evolutionvgfgen- solution (40) is calculated evetly[s]. The exploration scheme
erated by model-free integr@l-learning | and 1l (Algorithms 4 (47) with ¢ = 1 is used to hold Assumption 3a.
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Evolution of the Critic Weights w; (Cases 1 and 2)

15 : : : : : the approximation errors of the optimal policy shown in Fig.
10(b) is relatively high compared with those in Fig. 9(b)esh
_::;;’_]E"_\:_ WO S - SRR S errors are due to the a!oproximati_on of the unknadwm, ), but
. . . can be decreased by incorporating higher-order termsaffke
R oo anda,zf into the actor NN,
g 05 \ e T . . ) .
£ . Discussions: As opposed to the synchronous actor-critic
- . - methods [22], [24], where the actor NN with the same strgctur
or Homm R e K e to the critic NN was introduced for the closed-loop stailit
the proposed integrd)-learning methods introduce the actor
05 . 5 3 u s p NN for model-free learning, and as shown in this example,
Iteration its structure is determined by appropriate procedures when

g(z) contains some structural/parametric uncertainties. This
makes it possible to learn the online optimal control soluti
Case 2 ‘ @ wn X wp O wa without knowing the nonlinear dynamidy, g) and without
introducing the complex identifier NN structure (see [24] fo
Fig. 8. (Example 2) Cases 1 and 2Evolution of critic weightsw; generated actor-critic-identifier architecture).
by integral Q-learning . As shown in Figs. 8 and 9(a), the NN weights almost
converge at 2 [s], showing that the convergence time is amil
) o ) to the actor-critic-identifier method in [24], and fasteath
Case 1:;|rst, we assumé () is linearly parameterized asihe model-based actor-critic method in [22]. On the other
h(z1) = 07 4(x1) with zero approximation errosy,(z) = 0, hand, whenh(z,) is linearly parameterized (Case 1), the
where) and ¢ (x,) are given by approximation error of the optimal control policy is far dter
9 =1, 2]7 andv(z1) = [cos(221), 1]7. than the actor-critic methods [22], [24] as shown _in Fig.)9(b
These fast, accurate convergence results are mainly dihe to
From this,v; and ¢, in the actor NN are determined &s €  second-order convergence nature of Pl and I-Pl methodsan th
R* and ¢,(x) = [21cos(221), @1, T2 cos(2x1), 22 |7, and iteration domain13], [17], [21], [36]. As shown in Fig. 10(a),
the optimal actor NN weights* are given by the approximation error of the optimal value function isoals
v = —[07, 9717 =1(0,0,1, 2" very small even when(z;) is completely unknown (Case 2).
’ R ‘ In this case, however, the approximation error of the ogtima
The simulation results are shown in Figs. 8 and 9. As showantrol policy is relatively large compared to the actdticr
in Figs. 8 and 9(a), the weights in the critic and actor NN&ethods [22], [24]. This is due to the approximation error
converge to their respective optimal ones within 3 iteragjo £»(z), Which can be made sufficiently small by increasing
Fig. 9(b) illustrates the optimal policy approximation @rr the number of neurons. Though the proposed I-RL methods
at i = 6, which is very small € 10-19), showing the show the good convergence properties, they require aliniti
effectiveness of the proposed integéllearning |. admissible policy, while the synchronous methods do ndf, [22
Case 2:next, assumeé(z;) in g(x) is completely unknown [24]. This restriction can be relaxed if the I-RL methods are
and consider its expression (45) wili = 7 and¢(z) given developed based on VI [21] or generalized PI [17], [21], eath
by ¢(z1) = [1 21 22 23 2% 25 28]T. From this and (46), the than PI, which is the future work of this paper.
activation functiong,(z) € R' of the actor NN can be
determined ag?(z) = x] for 1 < j < 7and¢(z) = 2] "x2 VII. CONCLUSIONS
for 8 < j < 14. The unknown vector) in (45) and in  In this paper, we proposed one partially model-free I-RL
the optimal actor NN weightv* can be also obtained asmethod named explorized Pl and two completely model-free
¥ =13,0,-2,0,2/3,0, —4/45]" from the Taylor expansion |-RL methods named integrg)-learning | and Il, the objective

of h(x;) atz; = 0: of all of which is to find the online solution to the given CT
ot 46 nonlinear optimal control problem with input-affine dynasi
h(x1) = cos(2x1) +2 =3 — 227 + ?1 — 4—51 +0(2}). All the proposed methods are able to simultaneously andystab

explore the state-space during the learning phase. Toaevel

The simulation results in Case 2 are demonstrated in Figge methods, the concepts of exploration, I-TD, and inviria
8 and 10. As can be seen from Fig. 8, the critic NN weights

at each iteration are almost equal to those in Case 1, which
converge to the optimal ones. The final critic NN weights
w; ati = 6 in Case 2 iswg = [0.5000, 0.0000, 1.0000]”

and Fig. 10(a) shows the corresponding approximation error

TABLE IlI
(EXAMPLE 2) CASE 2: THE ACTORNN WEIGHTSvg AND v*

: . . N Y T | A Y Y

of the optimal value function. Here, the maximum error is T T 00000 o s T 00000l o2 00000 5

smaller_thanlO , shc_)wmg the_good performance of.lntegral 51 00000l oll 7| cooor!l oll 12| -06667 | -23

Q-learning I. The optimal and final weights' andv; ati = 6 3] 00000| O] 8 | -3.0000| -3 || 13| 0.0000 0

of the actor NN are shown in Table lll. Though the error 4 | 00000 0 | 9 | 0.0000| O || 14 | 0.0889 | 4/45
5| 0.0000| O | 10| 2.0000| 2

lve; — v§|| for eachy is very small, as shown in Table lII,
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Evolution of the Actor Weights v; (Case 1) Optimal Value Function Approximation Frror (Case 2)
05 w ‘ ‘ x107°
- 0
s -
7 -
-, - . -05
—0.5] P Q \
%) i ©
fee] 4 AN
= \ 7 -1
Tg" — 1 f
- -
< - 8 - 1,'; 2
-1.5 : : vy
Uiq
—2 0 2
J -2 -2 -1 X
25 i i i i i
0 1 2 3 4 5 6 (a) Optimal value function approximation error
Iteration
Optimal Control Policy Approximation Error (Case 2)
(a) Evolution of actor weightsr;
Optimal Control Policy Approximation Error (Case 1) 0.01 @»\
=10 : %
5 x 10 .
=0
=
T 0
o 70.01
-2
2 1
0
, a4 -05 X
27, -1 0 (b) Optimal policy approximation error
_ M
(b) Optimal policy approximation error Fig. 10. (Example 2) Case 2:Approximation errors of the online optimal

solution (a)Vs(z) and (b)is () wheney, (1) is not identically zero

Fig. 9. (Example 2) Case 1:Simulation results when the policy is exactly
parameterized—(a) evolution of the actor NN weigkts and (b) optimal
control policy approximation error
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APPENDIXA: PROOF OFLEMMA 1

The proof will be done by contradiction. Fpfx) € A(Q),
assume that there exists another functiore C*(Q) that is
positive definite and satisfies the Lyapunov equation

H(z,pu(x),VV(z)) =0 Ve Q, V(0)=0. (49)

From (49),r(x,u) > 0, and the definition ofH, we have
(VV ()T (f(z)+g(x)u(r)) <0, Vz € 2\ {0}, which again
implies VV (z) # 0 and f(z) + g(z)u(z) # 0 Vo € Q\ {0}.
Subtracting (49) from (8) yields

H(Ivﬂ(x)v VV) - H(Iv :LL(I)’ vv,u)
= [VV(z) = VV*(@)]" - (f(2) + g(z)nu(x)) =0,

which holdsvVz € Q. Therefore, we obtaily (z) = V#(z)+c

for a constant, vz € Q\ {0} since f(z) + g(x)u(z) # 0

Ve € Q\ {0}. Here,V(0) = V#(0) = 0 results inc = 0

and therebyV(z) = V#(z) is obtained for allz € Q, a
contradiction. Therefore, the value functidft’ is the unique
solution of (8) overC!(2), the completion of the proof.
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and p; and p;,1 are invariantly admissible of2; ;. So, u;
and V#i satisfy (8) withy = u;, i.e, for all z € Q;41,

(VVH ()T (f(2) + g(2)pi(x)) = —r(z, pi(x)).

Then, differentiating/*i (x) along the trajectory:(z; ;. 41, €)
and substituting (12) and (50) yield

VHi(z) = (VVH ()T (f () + 9() i1 (@) + €])
= —r(, pi) = 2ufy  Re — 2pf  R(pi1 — i)

(50)

Applying Young’s inequality22” Ry < 2T Rz + yT Ry for
z,y € R™, we obtain

VHi(z) < —S(z) + e’ Re, (51)

which can be further expanded using(||z||) < S(x) and
Vii(z) < ay,([|z]) (see (4) and (5)) as

Vmg—(1—9)S(x)—9d(V‘“(w))-i-U(R)'( sup IIerll2>a

t<rT<o0
wherea := a; o&;} is of classKC and defined on the interval
[0, &y, (rq)] by Assumption 1 and [34, Lemma 4.2];c (0, 1)
is a constant satisfying

sup le-|* < 0-a(d:)/a(R),

t<T<o0

(52)

Since we assume the exploratiopatisfies (18), such always

exists in(0, 1). Therefore, we have
Vit (z) < —(1-0)S(2), (53)

for all z € ;44 satisfyingV*:(z) > r;, wherer; is given by

2
P _ SUPt< 7 <00 ||8T||)

1 R) - ( <7< )
Q (U( ) 7
Now, substituting (52) into (54) and rearranging the equati
yieldsr; < d;. Hence, noting tha; , = Qg‘ by Assumption
2, we can conclude that

(54)

Qﬁfj:{IED:Viﬂ(x)Sm}

is in the interior of(2;, 1, and (53) holds for al: € ;1\ Q4.
This impliesV* is negative definite on the bounda®®; 1,
S0z, (z; i1, e) starting inz € Q;41 stays inQ;,1 for all 7.
That is,e € »AI(QiJrl; ,LLZ'+1).

Next, Assumption 1 and Theorem 1 imply that,, is in
the interior of By(r4), s0 we haveQ!: C Q;11 C Bo(ra).
Applying (4) and (5) to (53) to prove ISS, we obtain

VH(2,) < —(1 = 0)a(V* (2,))
<—-(1-0)a(r)=-k<0

(55)
(56)

forall z; € Q;11\ Q¥ Hence, (56) and € Az (Q;y1; priv1)
imply that for anyz € Q;,, \ Q, there ist’ > ¢ such that
IT(Z7/,L1'+17 6) S Ql’Jrl \ Q‘L;; forall 7 € [t, t+ t/),
xr (2, pip1,e) € Qi forall 7 > ¢+t

Assumed is locally Lipshitz without loss of generalyand
let v, be the solution to the scalar differential equatign=

Sincepo € A(Qp), Assumption 2 and Theorem 1 imply that

for anyi € Z, Q41 is in the interior of D, V#i € C1(Q;41),

2See the proof of [34, Theorem 4.9].
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—(1 — 6)a(v,) under the initial conditionv(t) = V*#i(z).

Then, [34, Lemma 3.4 and Lemma 4.4] and (55) show that

there isg, € KL, defined on0, &, (rq4)], such that
Vi (a(r)) < o(r) = Bu(V(2), T — 1),

for any initial conditionz € ;1 \ Q) and allT € [t +t').
Therefore, using (4) yields the following inequality:

|| < et (VHi(2r)) < a,t o Bu(VHi(2), T — 1)
S g;il 0 BU(@#i( |ZH)5 T = t) = ﬂ(HZ”v T = t)a (57)

where(y,s) = a,,! o By (@, (y), ) is of classkKL by [34,
Lemma 4.2]. On the other hand, for all € Q!:, we have
V#i(x,) <r; and from (4) and (54),

MJSa(

where a(y) = o, (a(R)y?/0) is of classK [34, Lemma
4.2]. Finally, (57) and (58) imply that for alf € ©,,, and all
T > t, the trajectoryz, (z; u;11, e) satisfies the inequality

)

sup |le(s)| (58)

t<s<oo

sup |le(s)]
t<s<oo

|%|smwmf—w+a(

under (18). Here, instead @f oo), the supremum on the right
hand side can be chosen oyerr] sincex, depends only on
e(s) for t < s < 7. This completes the proof of the local ISS
For the global cas® = Q; =R", a,,, a,,, as, anda, are all
defined on[0, c0), anda,,, € Ko impliesa,, € Ko by (4).
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Then, summing up the integrals for @lf € Z, we obtain

h(t;z) = /too’H(xT(z;u,e),eT) dr = 0.

That is, h(t;z) = 0 for all £ > 0 and all z € Q. So, we have
h(t;z) = —H(z:(z; 1 €), €7)|-=¢ = 0, and thereby,

H(z,e) =0, Vt>0andVz € Q. (63)
Sincee is T-periodic,i.e, e; = e, for all = > t, (63) is
reduced to

H(z,er) =0, VT € [t,t+T) andVz € Q,

which is equivalent to (20). The proof of the opposite diiett
can be easily done by first integrating (20) and then sulbstitu
ing (60) and (61).
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Therefore,d; and the upper bound in (18) can be arbitrarily

large, so ISS holds for arbitrary exploratien Furthermore,
the initial conditionz can be also arbitrarily chosen sinQ¢:
with 7; (< d;) defined in (54), and thereb®,;,, (D ©/") can
be extended t&R™ by increasingd; (or r;) to co to include
any given initial statez € R", the completion of the proof.
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Note that(u,e) € Az(2) implies z,(z; u, e) lies entirely
in Q, for all 7 > t. So,V € C!(Q) satisfies
T
V(zear) — Viz) = / V() dr, (60)
t

for any initial valuex; = 2z € Q, where the time derivative

V(z,) is given by
V(SCT) =VIV(zr) - (f(xr) + glar)[u(zr) +er]). (1)

Defining H(x,e) = H(z,u(z), VV(z)) — 20 (z)Re and
substituting (60) and (61) into the I-TD (19), we obtain

t+T

/ H(z, (23 p,€),e7) dr = 0. (62)

t
Therefore, finding the solution of the advanced I-TD (19) f
all z; = z € Q is equivalent to solving (62Yz € Q. Since
- (z;p,e) € Q for all 7 > ¢ + T, following the same steps
with starting timet + M T, instead oft, yields

t+(M+1)T

/t-i—MT

H(zr (23 p,€), ) dr =0, YM € Zy.
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